精英家教网 > 高中数学 > 题目详情
函数f(x)=ln(4+3x-x2)的单调递减区间是(  )
A、(-∞,
3
2
]
B、[
3
2
,+∞)
C、(-1,
3
2
]
D、[
3
2
,4)
考点:复合函数的单调性
专题:函数的性质及应用
分析:求出函数的定义域,结合复合函数单调性之间的关系即可得到结论.
解答:解:要使函数有意义,则4+3x-x2>0,即x2-3x-4<0解得-1<x<4,
设t=4+3x-x2,则函数在(-1,
3
2
]上单调递增,在[
3
2
,4)上单调递减.
因为函数y=lnt,在定义域上为增函数,
所以由复合函数的单调性性质可知,则此函数的单调递减区间是[
3
2
,4).
故选:D
点评:本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

作出y=x2-4x+3的图象,求f(2)、f(1)、f(0)的值,观察f(2)和f(0)的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

画图:r=a(1-sinθ).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
3
 
-x2+x+2
的单调增区间为(  )
A、[-1,
1
2
]
B、(-∞,-1]
C、[2,+∞)
D、[
1
2
,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=40.1,b=log30.1,c=0.50.1,则(  )
A、a>b>cB、b>a>cC、a>c>bD、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆x2+y2-10x-10y=0,x2+y2+6x-2y-40=0,则它们的公共弦所在直线的方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于0的等差数列{an}满足:a1、a3、a4成等比数列,Sn为{an}的前n项和,则下列选项正确的是(  )
A、S9>0B、S4=S6C、S4<0D、{Sn}中S5最大

查看答案和解析>>

科目:高中数学 来源:苏教版(新课标) 必修4 题型:

设A(2,3),B(-1,5),且=3,则点D的坐标是________.

查看答案和解析>>

科目:高中数学 来源:人教A版(新课标) 必修四 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<的图像与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0,-2)

(1)求f(x)的解析式及x0的值;

(2)若锐角满足,求f(4)的值.

查看答案和解析>>

同步练习册答案