精英家教网 > 高中数学 > 题目详情
17.关于二项式${(\sqrt{x}-1)^{2005}}$有下列命题:
①该二项展开式中非常数项的系数和是1;   
②该二项展开式中第六项为$C_{2005}^6•{x^{1999}}$;
③该二项展开式中无有理项;
④当x=100时,${(\sqrt{x}-1)^{2005}}$除以100的余数是49.
其中正确的序号是①④.(注:把你认为正确的命题序号都填上)

分析 ①用特殊值,求出二项式${(\sqrt{x}-1)^{2005}}$展开式中所有非常数项的系数和即可;
②利用通项公式求出展开式中第六项即可;
③该二项展开式中第2006项是-1,为有理项;
④x=100时,按照${(\sqrt{x}-1)^{2005}}$的二项展开式,求出它除以100的余数是多少即可.

解答 解:对于①,令x=1,二项式${(\sqrt{x}-1)^{2005}}$展开式中
所有项的系数和为(1-1)2005=0,其中常数项为(-1)2005=-1,
∴展开式中所有非常数项的系数和是0-(-1)=1,①正确;
对于②,该二项展开式中第六项为
T5+1=${C}_{2005}^{5}$•${(\sqrt{x})}^{2000}$•(-1)5=-${C}_{2005}^{5}$•x1000,②错误;
对于③,该二项展开式中第2006项是-1,为有理项,∴③错误;
对于④,当x=100时,
${(\sqrt{x}-1)^{2005}}$=(10-1)2005
=${C}_{2005}^{0}$•102005-${C}_{2005}^{1}$•102004+${C}_{2005}^{2}$•102003-…+${C}_{2005}^{2004}$•10-${C}_{2005}^{2005}$
=m•100+20050-1
=(m+200)×100+49,其中m∈N*
∴${(\sqrt{x}-1)}^{2005}$除以100的余数是49,④正确.
综上,正确的命题是①④.
故答案为:①④.

点评 本题考查了二项式定理的应用问题,也考查了数的整除问题,是综合性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在矩形ABCD中,|$\overrightarrow{AB}$|=$\sqrt{3}$,|$\overrightarrow{BC}$|=1,则向量$\overrightarrow{BD}$的模等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对任意复数ω1,ω2,定义ω121$\overline{{ω}_{2}}$,其中$\overline{{ω}_{2}}$是ω2的共轭复数.对任意复数z1,z2,z3,有如下四个命题:
①(z1+z2)*z3=(z1*z3)+(z2*z3);
②z1*(z2+z3)=(z1*z2)+(z1*z3);
③(z1*z2)*z3=z1*(z2*z3);
④z1*z2=z2*z1
则真命题是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若k∈R,则“方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示双曲线”是“k>3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将2名教师,6名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师3名学生组成,不同的安排方案共有(  )
A.10B.40C.20D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某篮球运动员在三分线处投球的命中率是$\frac{3}{5}$,若他在此处投球3次,则恰好投进2个球的概率是$\frac{54}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2为椭圆C:$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1的焦点,点P为椭圆C上的动点,若|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|≥1,则$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|\overrightarrow{P{F}_{1}}|-|\overrightarrow{P{F}_{2}}|}$的最大值与最小值分别为(  )
A.$\frac{9}{4}$,$\sqrt{2}$B.$\frac{3}{2}$,$\sqrt{2}$C.$\frac{9}{4}$,$\frac{17}{12}$D.$\frac{9}{4}$,$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a为第二象限角,$\frac{|sinα|}{sinα}$-$\frac{cosα}{|cosα|}$+$\frac{{|{tanα}|}}{tanα}$=(  )
A.0B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.含2n+1项的等差数列,其奇数项的和与偶数项的和之比为多少?能分别求出奇数项和与偶数项和吗?

查看答案和解析>>

同步练习册答案