精英家教网 > 高中数学 > 题目详情
已知菱形ABCD中,对角线AC=
3
,BD=1,P是AD边上的动点,则
PB
PC
的最小值为
1
2
1
2
分析:分别以对角线BD,AC为x轴、y轴建立直角坐标系,设P(x,y),由
AP
AD
可得
1
2
y+
3
4
-
3
2
x=0
,代入
PB
PC
=(-
1
2
-x,-y)•
-x,
3
2
-y
)=-
1
2
x+x2-
3
2
y+y2
=4x2-4x+
3
2
根据二次函数的性质可求
解答:解:分别以对角线BD,AC为x轴、y轴建立如图所示的直角坐标系
∵AC=
3
,BD=1,AC⊥BD
∴A(0,-
3
2
),B(-
1
2
,0),C(0,
3
2
),D(
1
2
,0),
AD
=(
1
2
3
2
)

∵P是AD边上的动点,设P(x,y),
AP
=(x,y+
3
2
)

AP
AD

1
2
y+
3
4
-
3
2
x=0

PC
=(-x,
3
2
-y )
PB
=(-
1
2
-x,-y)

PB
PC
=(-
1
2
-x,-y)•
-x,
3
2
-y

=-
1
2
x+x2-
3
2
y+y2
=4x2-4x+
3
2

根据二次函数的性质可知,当x=
1
2
时,值最小为
1
2

故答案为:
1
2
点评:本题主要考查了向量数量积的坐标表示的应用,二次函数性质的应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A-BD-C为120°,则点A到△BCD所在平面的距离等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A-BD-C为120°,则点A到△BCD所在平面的距离等于(  )
A、
2
2
B、
2
4
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知菱形ABCD中,AB=4,∠BAD=60°(如图1所示),将菱形ABCD沿对角线BD翻折,使点C翻折到点C1的位置(如图2所示),点E,F,M分别是AB,DC1,BC1的中点.

(Ⅰ)证明:BD∥平面EMF;
(Ⅱ)证明:AC1⊥BD;
(Ⅲ)当EF⊥AB时,求线段AC1的长.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省高三五月适应性考试(三)文科数学试卷(解析版) 题型:解答题

(本小题满分13分)

已知菱形ABCD中,AB=4, (如图1所示),将菱形ABCD沿对角线翻折,使点翻折到点的位置(如图2所示),点EFM分别是ABDC1BC1的中点.

  

(1)证明:BD //平面

(2)证明:

(3)当时,求线段AC1 的长.

 

查看答案和解析>>

同步练习册答案