【题目】在平面直角坐标系
中,已知曲线
的参数方程为
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.曲线
的极坐标方程为
,曲线
与曲线
的交线为直线
.
(1)求直线
和曲线
的直角坐标方程;
(2)直线
与
轴交于点
,与曲线
相交于
,
两点,求
的值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).
(1)求曲线
的普通方程;
(2)以
为极点,
轴的非负半轴为极轴建立极坐标系,直线
的极坐标方程为
,(
),直线
与曲线
交于
,
两点,求线段
的长度
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形图表示学生人数依次记为A1、A2、…A10(如A2表示身高(单位:cm)在[150,155
内的人数].图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是
![]()
![]()
A.i<6B.i<7C.i<8D.i<9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是一个首项为2,公比为q(q
1)的等比数列,且3a1,2a2,a3成等差数列.
(1)求{an}的通项公式;
(2)已知数列{bn}的前n项和为Sn,b1=1,且
1(n≥2),求数列{an
bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,过点
且不过点
的直线与椭圆
交于
,
两点,直线
与直线
交于点
.
(Ⅰ)若
垂直于
轴,求直线
的斜率;
(Ⅱ)试判断直线
与直线
的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
)的周期为
,图像的一个对称中心为
,将函数
图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移
个单位长度后得到函数
的图像.
(1)求函数
与
的解析式;
(2)是否存在
,使得
,
,
按照某种顺序成等差数列?若存在,请确定
的个数;若不存在,说明理由.
(3)求实数a与正整数n,使得
在
内恰有2013个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对有
个元素的总体
进行抽样,先将总体分成两个子总体
和
(m是给定的正整数,且
),再从每个子总体中各随机抽取2个元素组成样本,用
表示元素i和j同时出现在样本中的概率,则
_________;所有
的和等于________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型科学竞技真人秀节目挑选选手的方式为:不但要对选手的空间感知、照相式记忆能力进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于120分为“未入围学生”.已知男生入围24人,女生未入围80人.
(1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有95%以上的把握认为脑力测试后是否为“入围学生”与性别有关;
性别 | 入围人数 | 未入围人数 | 总计 |
男生 | |||
女生 | |||
总计 |
(2)用分层抽样的方法从“入围学生”中随机抽取11名学生,求这11名学生中男、女生人数;若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),分别求这11名学生中女生测试分数平均分的最小值.
|
|
|
|
|
|
|
|
|
|
附:
,其中
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com