精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
(x+
a
x
),(x≠0,x∈R)在(1,+∞)
上为增函数,函数g(x)=lnx-ax,(x>0,x∈R)在(1,+∞)上为减函数.
(1)求实数a的值;
(2)求证:对于任意的x1∈[1,m](m>1),总存在x2∈[1,m],使得g(x2)+f(x1)=0.
(1)f(x)=
1
2
(1-
a
x2
)≥0
在(1,+∞)上恒成立,
则a≤x2在(1,+∞)上恒成立,
∴a≤1.…(3分)
g(x)=
1
x
-a≤0
在(1,+∞)上恒成立,
a≥
1
x
在(1,+∞)上恒成立.
∴a≥1.…(5分)
从而为a=1…(7分)
(2)依题意可知,证明对于任意的x1∈[1,m](m>1),
总存在x2∈[1,m],使得g(x2)+f(x1)=0.
只须证:函数y=-f(x)的值域是函数y=g(x)值域的子集.
设y=-f(x)的值域为M,y=g(x)的值域为N;
由(1)可知y=-f(x)=-
1
2
(x+ 
1
x
)
在[1,m]上为减函数,
g(x)=lnx-x在[1,m]上为减函数
M=[-
1
2
(m+
1
m
),-1],N=[lnm-m,-1]
…(10分)
?(x)=x-
1
x
-2lnx,(x>1)

则∵x>1,
?′(x)=1+
1
x2
-
2
x
=
(x-1)2
x2
>0

∴y=?(x)在(1,+∞)上为增函数
∵m>1,
∴?(m)>?(1)=0
2lnm<m-
1
m

-
1
2
(m+
1
m
)>lnm-m
…(14分)
∴M⊆N,即对于任意的x1[1,m](m>1)
总存在x2∈[1,m],使得g(x2)+f(x1)=0…(15分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案