精英家教网 > 高中数学 > 题目详情
已知|a|<1,|b|<1,求证:|1-ab|>|a-b|
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:首先化简|1-ab|2-|a-b|2可得,|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1);结合题意中|a|<1,|b|<1,可得a、b的范围,进而可得|1-ab|2-|a-b|2>0,由不等式的性质,可得答案.
解答: 证明:∵|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1).
∵|a|<1,|b|<1,∴a2-1<0,b2-1<0.
∴|1-ab|2-|a-b|2>0,故有|1-ab|>|a-b|.
点评:本题考查不等式性质的基本运用,注意结合题意,进行分式、整式的转化,一般利要积的符号法则进行分析.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线2x2-y2=8的虚轴长是(  )
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

一元二次不等式x2-x-2>0的解集是(  )
A、(∞,-1)∪(2,+∞)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,求证:x6-x5+x2-x+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2an2+an-1.
(1)求数列{an}的通项公式;
(2)记bn=
an
2n
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
4
)+cos(x-
4
),x∈R.
(1)求f(x)的最小正周期和最值;
(2)已知cos(β-α)=
4
5
,cos(β+α)=-
4
5
,(0<α<β≤
π
2
),求证:[f(β)]2-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式x2-ax+2≤0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=2-3i,z2=
15-5i
(2+i)2
.求:
(1)z1•z2
(2)
z1
z2

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列是{an}公差大于0的等差数列,a1=2,a3=a22-10.
(1)求{an}的通项公式;
(2){bn}是首项为1,公比为2的等比数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

同步练习册答案