精英家教网 > 高中数学 > 题目详情
16.过点P(3,4),斜率为2的直线方程为(  )
A.2x-y-2=0B.2x+y-2=0C.x+y-1=0D.x-y+2=0

分析 直接由直线方程的点斜式写出方程,化为一般式得答案.

解答 解:∵直线过点P(3,4),且斜率为2,
∴由直线方程的点斜式得直线方程为y-4=2(x-3),
化为一般式得:2x-y-2=0.
故选:A.

点评 本题考查直线方程的点斜式,考查了化点斜式为一般式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图:已知直角三角形ABC,∠B为直角,∠C的平分线交AB于D,以AD为直径作圆O,交AC于点E,交CD于F.
(1)求证:C、B、D、E四点共圆:
(2)若AE=$2\sqrt{2}$,BD=1,求F到线段AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知M是椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$上的一点,F1、F2是椭圆的焦点,则|MF1|•|MF2|的最大值是(  )
A.4B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别
是否需要志愿者
需要4030
不需要160270
由K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$算得K2=$\frac{{500×{{(40×270-30×160)}^2}}}{200×300×70×430}$=9.967
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,则下列结论正确的是(  )
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”;
②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;
③采用系统抽样方法比采用简单随机抽样方法更好;
④采用分层抽样方法比采用简单随机抽样方法更好.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题“存在x0∈R,使f(x0)>1”的否定是对任意的x∈R,都有f(x)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)-log2x]=6,若x0是方程f(x)+f(x-2)=10的一个解,且x0∈(a,a+1)(a∈N*),则a=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.钝角三角形ABC的面积是$\frac{{\sqrt{3}}}{2}$,AB=1,BC=2,则AC=(  )
A.3B.7C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当$x∈[0,\;\;\frac{π}{2}]$时,f(x)=sinx,则$f(\frac{2015π}{3})$的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{x,x<1}\\{2x-1,1≤x<10}\\{{3}^{x}-11,x≥10}\end{array}\right.$试设计算法及程序框图,并写出程序.要求输入自变量x,输出函数值.

查看答案和解析>>

同步练习册答案