15£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬µãA£¨-2£¬0£©£¬B£¨2£¬0£©£¬Æ½ÃæÄÚÈÎÒâÒ»µãPÂú×㣺ֱÏßPAµÄбÂÊk1£¬Ö±ÏßPBµÄбÂÊk2£¬k1k2=-$\frac{3}{4}$£¬µãPµÄ¹ì¼£ÎªÇúÏßC1£¬Ë«ÇúÏßC2ÒÔÇúÏßC1µÄÉÏÏÂÁ½¶¥µãM¡¢NΪ¶¥µã£¬QÊÇË«ÇúÏßC2Éϲ»Í¬ÓÚ¶¥µãµÄÈÎÒâÒ»µã£¬Ö±ÏßQMµÄбÂÊΪk3£¬Ö±ÏßQNµÄбÂÊk4£®
£¨1£©ÇóÇúÏßC1µÄ·½³Ì£»
£¨2£©Èç¹ûk1k2+k3k4¡Ý0£¬·Ö±ðÇóË«ÇúÏßC2µÄÁ½Ìõ½¥½üÏßÇãб½ÇµÄȡֵ·¶Î§£»£¨Àí£©
£¨3£©Èç¹ûk1k2+k3k4¡Ý0£¬·Ö±ðÇóË«ÇúÏßC2µÄ½¹¾àµÄȡֵ·¶Î§£®£¨ÎÄ£©

·ÖÎö £¨1£©ÉèP£¨x£¬y£©£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½ÇúÏßC1µÄ·½³Ì£»
£¨2£©ÉèË«ÇúÏß·½³ÌΪ$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{{b}^{2}}$=1£¨b£¾0£©£¬Q£¨x0£¬y0£©ÔÚË«ÇúÏßÉÏ£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬½áºÏk1k2+k3k4¡Ý0ÇóµÃbµÄ·¶Î§£¬¼´¿ÉµÃµ½Ë«ÇúÏßC2µÄÁ½½¥½üÏßµÄбÂʵķ¶Î§£¬½øÒ»²½ÇóµÃË«ÇúÏßC2µÄÁ½Ìõ½¥½üÏßÇãб½ÇµÄȡֵ·¶Î§£»
£¨3£©ÓÉ£¨2£©ÖÐÇóµÃµÄbµÄ·¶Î§£¬½áºÏ½¹¾àΪ2$\sqrt{3+{b}^{2}}$ÇóµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÉèP£¨x£¬y£©£¬
Ôò${k}_{1}{k}_{2}=\frac{y}{x+2}•\frac{y}{x-2}=-\frac{3}{4}$£¬
¡àÇúÏßC1µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¨x¡Ù¡À2£©£»
£¨2£©ÉèË«ÇúÏß·½³ÌΪ$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{{b}^{2}}$=1£¨b£¾0£©£¬
Q£¨x0£¬y0£©ÔÚË«ÇúÏßÉÏ£¬¡à$\frac{{{y}_{0}}^{2}}{3}-\frac{{{x}_{0}}^{2}}{{b}^{2}}=1$£¨b£¾0£©£¬
¡ßk3k4=$\frac{{y}_{0}-\sqrt{3}}{{x}_{0}}•\frac{{y}_{0}+\sqrt{3}}{{x}_{0}}=\frac{{{y}_{0}}^{2}-3}{{{x}_{0}}^{2}}$=$\frac{3}{{b}^{2}}$£¬
¡à-$\frac{3}{4}+\frac{3}{{b}^{2}}$¡Ý0£¬¡à0£¼b¡Ü2£¬
¡ßË«ÇúÏßµÄÁ½Ìõ½¥½üÏßµÄбÂÊ·Ö±ðΪ$\frac{\sqrt{3}}{b}¡¢-\frac{\sqrt{3}}{b}$£¬
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏßµÄбÂʵķ¶Î§·Ö±ðΪ[$\frac{\sqrt{3}}{2}$£¬+¡Þ£©¡¢£¨-¡Þ£¬-$\frac{\sqrt{3}}{2}$]£®
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏßµÄÇãб½ÇµÄ·¶Î§Îª[$arctan\frac{\sqrt{3}}{2}$£¬$\frac{¦Ð}{2}$£©¡¢£¨$\frac{¦Ð}{2}$£¬$¦Ð-arctan\frac{\sqrt{3}}{2}$]£»
£¨3£©ÓÉË«ÇúÏßC2µÄ½¹¾àΪ2$\sqrt{3+{b}^{2}}$£¬
ÓÖ0£¼b¡Ü2£¬
¡àË«ÇúÏßC2µÄ½¹¾àµÄȡֵ·¶Î§¡Ê£¨2$\sqrt{3}$£¬2$\sqrt{7}$]£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬Ö÷Òª¿¼²éÍÖÔ²ºÍË«ÇúÏߵķ½³ÌºÍÐÔÖÊ£¬Í¬Ê±¿¼²éÖ±ÏßµÄбÂʺÍÇãб½Ç¼äµÄ¹ØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒ¹ýµã£¨$\sqrt{2}$£¬$\frac{\sqrt{2}}{2}$£©£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©Éè²»¹ýÔ­µãOµÄÖ±Ïßl£ºy=kx+m£¨k¡Ù0£©£¬Óë¸ÃÍÖÔ²½»ÓÚP¡¢QÁ½µã£¬Ö±ÏßOP¡¢OQµÄбÂÊÒÀ´ÎΪk1¡¢k2£¬Âú×ã4k=k1+k2£¬ÊÔÎÊ£ºµ±k±ä»¯Ê±£¬m2ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a1=5£¬q=1£¬ÔòS6=£¨¡¡¡¡£©
A£®5B£®0C£®²»´æÔÚD£®30

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýy=g£¨x£©Óëf£¨x£©=loga£¨x+1£©£¨0£¼a£¼1£©µÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ
£¨¢ñ£©Çóy=g£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©º¯ÊýF£¨x£©=f£¨x£©+g£¨x£©£¬½â²»µÈʽF£¨t2-2t£©+F£¨2t2-1£©£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôʵÊýx£¬yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}y¡Ü5\\ 2x-y+3¡Ü0\\ x+y-1¡Ý0\end{array}\right.$£¬Ôòz=x+2yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®10B£®11C£®13D£®14

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÊýÁÐ{an}ÖУ¬SnΪÆäǰnÏîºÍ£¬ÆäÖÐa1=2£¬a4=$\frac{3}{4}$£¬2Sn+2=Sn+Sn+1£¨n¡ÊN*£©£¬ÔòSnµÄ×î´óֵΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªf£¨x£©=ax+x2-xlna£¨a£¾1£©£¬Èôy=|f£¨x£©-b+$\frac{1}{b}$|-3ÓÐ4¸öÁãµã£¬ÇóbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÊýÁÐ{an}ÖУ¬1£¼a1£¼2£¬an+1=1+an-$\frac{1}{2}$an2£¨n¡ÊN*£©£®ÇóÖ¤£º
£¨1£©a3¡Ê£¨$\frac{11}{8}$£¬$\frac{3}{2}$£©£»
£¨2£©µ±n¡Ý3ʱ£¬|an-$\sqrt{2}$|£¼$\frac{1}{{2}^{n}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Éè¹ØÓÚxµÄº¯Êýy=2sin2x-2asinx-2a+2014µÄ×îСֵΪf£¨a£©£¬ÊÔÈ·¶¨Âú×ãf£¨a£©=2008µÄaÖµ£¬²¢¶Ô´ËʱµÄaÖµÇóyµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸