【题目】已知圆
与直线
相交于
、
两点,
为原点,若
.
(1)求实数
的值;
(2)求
的面积.
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若
,
,求函数
的极值;
(2)若
是函数
的一个极值点,试求出
关于
的关系式(即用
表示
),并确定
的单调区间;(提示:应注意对
的取值范围进行讨论)
(3)在(2)的条件下,设
,函数
,若存在
使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是梯形,
,
,
是正三角形,
为
的中点,平面
平面
.
![]()
(1)求证:
平面
;
(2)在棱
上是否存在点
,使得二面角
的余弦值为
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明:直线
与
轴相交于定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的左右焦点分别为
,
,上顶点为
.
(Ⅰ)若
.
(i)求椭圆
的离心率;
(ii)设直线
与椭圆
的另一个交点为
,若
的面积为
,求椭圆
的标准方程;
(Ⅱ)由椭圆
上不同三点构成的三角形称为椭圆的内接三角形,当
时,若以
为直角顶点的椭圆
的内接等腰直角三角形恰有3个,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com