精英家教网 > 高中数学 > 题目详情
(x-
1
x
10的展开式中x4的系数为
 
考点:二项式定理
专题:二项式定理
分析:先求得二项式展开式的通项公式,再令x的幂指数等于4,求得r的值,即可求得含x4的项的系数.
解答: 解:(x-
1
x
10的展开式的通项公式为Tr+1=
C
r
10
•(-1)r•x10-2r
令10-2r=4,求得r=3,故展开式中x4的系数为-
C
3
10
=-120,
故答案为:-120.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于正整数a及整数b、c,二次方程ax2+bx+c有两个根α,β,满足0<α<β<1,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1F2是椭圆
x2
9
+
y2
5
=1(a>b>0)的左、右两个焦点,A是椭圆上一点,△AF1F2的周长为10,椭圆的离心率为
2
3

(1)求椭圆的方程;
(2)若弦AB过右焦点F2交椭圆于B,且△F1AB的面积为5,求弦AB的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知线性回归方程
y
=3+2x,当变量x增加2个单位,其预报值平均增加4个单位;
②在进制计算中,100(2)=11(3)
③若ξ~N(3,σ2),且P(0≤ξ≤3)=0.4,则P(ξ≥6)=0.1;
④“a=
1
0
1-x2
dx”是“函数y=cos2(ax)-sin2(ax)的最小正周期为4”的充要条件;
⑤设函数f(x)=
2014x+1+2013
2014x+1
+2014sinx(x∈[-
π
2
π
2
])的最大值为M,最小值为m,则M+m=4027,
其中正确命题的个数是
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,下列各语句正确的是
 

(1)第一象限的角一定是锐角;
(2)终边相同的角一定相等;
(3)相等的角,终边一定相同;
(4)小于90°的角一定是锐角;
(5)象限角为钝角的终边在第二象限;
(6)终边在直线y=
3
x上的象限角表示为k360°+60°,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的图象关于点(a,b)对称的充要条件是f(a-x)+f(a+x)=2b(或f(x)+f(2a-x)=2b.如果函数y=f(x)的图象关于点(a,b)对称,则称(a,b)为“中心点”,称函数y=f(x)为“中心函数”.
①已知f(x)是定义在R上的增函数,点(1,0)为函数y=f(x-1)的“中心点”,若不等式f(m2-5m+21)+f(m2-8m)<0恒成立,则3<m<3.5.
②若函数y=f(x)为R上的“中心函数”,则y=
1
f(x)
为R上的“中心函数”.
③函数y=f(x)在R上的中心点为(a,f(a)),则F(x)=f(x+a)-f(a)为R上的奇函数.
④已知函数f(x)=2x-cosx为“中心函数”,数列{an}是公差为
π
8
的等差数列.若
7
n=1
f(an)=7π,则
[f(a4)]
a1a7
=
64
5

其中你认为是正确的所有命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:①函数y=tanx在第一象限是增函数;②奇函数的图象一定过原点;③函数y=sin2x+cos2x的最小正周期为π,其中假命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax+2y-1=0与直线2x-3y-1=0平行,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天的回报比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报是前一天的两倍.
若投资的时间为8~10天,为使投资的回报最多,你会选择哪种方案投资?(  )
A、方案一B、方案二
C、方案三D、都可以

查看答案和解析>>

同步练习册答案