精英家教网 > 高中数学 > 题目详情
对于正整数a及整数b、c,二次方程ax2+bx+c有两个根α,β,满足0<α<β<1,求a的最小值.
考点:二次函数的性质
专题:函数的性质及应用
分析:设f(x)=ax2+bx+c,根据条件转化为:f(x)=ax2+bx+c在(0,1)中有两个不同的零点,由二次函数的图象列出不等式,求出a的范围,再根据判断出的结果进行取值,最后求出a的最小值.
解答: 解:设f(x)=ax2+bx+c,(a>0),
∵一元二次方程ax2+bx+c=0在(0,1)中有两个不同的实数根,
∴函数设f(x)=ax2+bx+c在(0,1)中有两个不同的零点,
△=b2-4ac>0
f(0)=c>0
f(1)=a+b+c>0
0<-
b
2a
<1
,得
b2-4ac>0
c>0
a>-b-c
-2a<b<0
,则
a<
b2
4c
a>-b-c
a>-
b
2
     ①,
∵a、c是正整数,b是负整数,∴取值使
b2
4c
是正整数:
当b=-2,c=1时,由①得a∈∅,此时a无最小整数值;
当b=-4,c=1时,由①得3<a<4,此时a无最小整数值;
当b=-6,c=1时,由①得5<a<9,此时a有最小整数值为6;
综上得,a有最小整数值为6.
点评:本题主要考查对根的判别式,一元二次方程的根的分布等知识点的理解和掌握,能根据性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、a+b=0的充要条件是
a
b
=-1
B、?x0∈R,x02≤0
C、?x∈R,2x>1
D、ab>0是a>0,b>0的充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在四棱锥P-ABCD中,底面ABCD是正方形,PA=AB=2,PB=PD=2
2
,点E在PD上,且PE=
1
3
PD.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的余弦值;
(Ⅲ)证明:在线段BC上存在点F,使PF∥平面EAC,并求BF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2x2-9x+m≤0对x∈[2,3]总成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x-2sinxcosx+3cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的最大值和最小值,以及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,cosA=
3
5
,a=4,b=3,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+sin(x+
π
3
),x∈R
(1)求函数f(x)的最小正周期.
(2)若f(θ+
π
12
)=
6
10
,θ∈(
π
2
4
),求sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题甲:关于x的不等式x2+(a-1)x+a2>0的解集为R;命题乙:函数y=(2a2-a)x为增函数,当甲、乙有且只有一个是真命题时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(x-
1
x
10的展开式中x4的系数为
 

查看答案和解析>>

同步练习册答案