精英家教网 > 高中数学 > 题目详情
已知在△ABC中,cosA=
3
5
,a=4,b=3,求角C.
考点:余弦定理
专题:三角函数的求值,解三角形
分析:利用余弦定理列出关系式,将cosA,a,b的值代入求出c的值,利用余弦定理求出cosC的值,即可确定出C的度数.
解答: 解:∵在△ABC中,cosA=
3
5
,a=4,b=3,
∴由余弦定理得a2=b2+c2-2bccosA,即16=9+c2-6×
3
5
c,
整理得:5c2-18c-35=0,
解得:c=5或c=-
7
5
(舍),
∴由余弦定理得cosC=
a2+b2-c2
2ab
=
16+9-25
2×4×3
=0,
∵0<C<180°,
∴C=90°.
点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其众数为a,中位数为b,平均数为c,则有(  )
A、c>a>b
B、a>b>c
C、b>c>a
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点,F是PC的中点.
(Ⅰ)求证:面PDE⊥面PAB;
(Ⅱ)求证:BF∥面PDE.
(Ⅲ)当PA=AB时,
①求直线PC与平面ABCD所成角的大小.
②求二面角P-DE-A所成角的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正△ABC的边BC、CA、AB上分别取点P、Q、R,使CQ=2BP,AR=3BP.已知正三角形的边长是11cm,BP=xcm,△PQR的面积为S
(1)用解析式将S表示成x的函数;
(2)求S的最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于正整数a及整数b、c,二次方程ax2+bx+c有两个根α,β,满足0<α<β<1,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=2,求f(x)=
sin(θ-
2
)+2sin(π-θ)+4sin(
2
-θ)
cos(π+θ)+2cos(
π
2
+θ)+4cos(θ-π)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差不为零,a1=1,且a1,a2,a5成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求a1+a4+a7+…+a3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:

在全国汉字听写大赛之前,某地先进行了共十轮的选拔赛,某研究机构一直关注其测试选拔过程.第二轮选拔后有450名学生进入下一轮,该机构利用分层抽样的方法抽取了90人进行跟踪调查,得到第三轮是否通过的数据如下表所示:
考试未通过 考试通过 总计
女学生 27 36 63
男学生 9 18 27
总计 36 54 90
(Ⅰ)利用独立性检验估计第三轮通过与否与学生的性别是否有关?
(Ⅱ)估计全部450名学生通过第三轮测试的大约有多少人?
(Ⅲ)如果从第三轮测试通过的所有学生中利用分层抽样的方法抽取6名学生,然后从这6名学生中随机抽取2名学生进行问卷调查,求着2名学生中至少有1名女学生的概率.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)
P(K2≥k) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的图象关于点(a,b)对称的充要条件是f(a-x)+f(a+x)=2b(或f(x)+f(2a-x)=2b.如果函数y=f(x)的图象关于点(a,b)对称,则称(a,b)为“中心点”,称函数y=f(x)为“中心函数”.
①已知f(x)是定义在R上的增函数,点(1,0)为函数y=f(x-1)的“中心点”,若不等式f(m2-5m+21)+f(m2-8m)<0恒成立,则3<m<3.5.
②若函数y=f(x)为R上的“中心函数”,则y=
1
f(x)
为R上的“中心函数”.
③函数y=f(x)在R上的中心点为(a,f(a)),则F(x)=f(x+a)-f(a)为R上的奇函数.
④已知函数f(x)=2x-cosx为“中心函数”,数列{an}是公差为
π
8
的等差数列.若
7
n=1
f(an)=7π,则
[f(a4)]
a1a7
=
64
5

其中你认为是正确的所有命题的序号是
 

查看答案和解析>>

同步练习册答案