精英家教网 > 高中数学 > 题目详情
(2013•东莞二模)已知实数,x∈[0,10],执行如图所示的程序框图,则输出的x不小于47的概率为
1
2
1
2
分析:由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于47得到输入值的范围,利用几何概型的概率公式求出输出的x不小于47的概率.
解答:解:设实数x∈[0,10],
经过第一次循环得到x=2x+1,n=2
经过第二循环得到x=2(2x+1)+1,n=3
经过第三次循环得到x=2[2(2x+1)+1]+1,n=3此时输出x
输出的值为8x+7
令8x+7≥47得x≥5
由几何概型得到输出的x不小于47的概率为P=
10-5
10
=
1
2

故答案为:
1
2
点评:解决程序框图中的循环结构时,一般采用先根据框图的流程写出前几次循环的结果,根据结果找规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东莞二模)设Sn为数列{an}前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足bn=
bn-1
1+bn-1
,b1=2a1
(1)求证:数列{an}是等比数列,并求{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求数列{
1
an+2bn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞二模)命题“?x∈R,x2+1≥1”的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞二模)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.
(1)求证:AB1∥平面BC1D;
(2)若BC=3,求三棱锥D-BC1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞二模)已知x>0,y>0,且
1
x
+
9
y
=1
,则2x+3y的最小值为
29+6
6
29+6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞二模)已知函数f(x)=tan(
1
3
x-
π
6
)

(1)求f(x)的最小正周期;
(2)求f(
2
)
的值;
(3)设f(3α+
2
)=-
1
2
,求
sin(π-α)+cos(α-π)
2
sin(α+
π
4
)
的值.

查看答案和解析>>

同步练习册答案