精英家教网 > 高中数学 > 题目详情
若直线y=x+m与曲线x=
2y-y2
有且只有一个公共点,则实数m的取值范围是
0<m≤2,或m=1-
2
0<m≤2,或m=1-
2
分析:曲线x=
2y-y2
代表以点(0,1)为圆心,1为半径的圆的右半圆,而直线y=x+m的斜率为1,截距为m,在同一个坐标系中作出它们的图象,数形结合可得.
解答:解:对x=
2y-y2
平方可得x2+y2-2y=0,整理可得x2+(y-1)2=1,
故曲线x=
2y-y2
代表以点(0,1)为圆心,1为半径的圆的右半圆,
而直线y=x+m的斜率为1,截距为m,在同一个坐标系中作出它们的图象:

由图象可得当直线介于l1,l2之间,或为l3时两图象有且只有一个公共点,
由l3为相切可得
|0-1+m|
12+(-1)2
=1,解得m=1-
2
,或m=1+
2
,(舍去)
故当0<m≤2或m=1-
2
时,满足题意,
故答案为:0<m≤2,或m=1-
2
点评:本题考查直线与圆相交的性质,数形结合是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知图形OAPBCD是由不等式组
0≤x≤e2
0≤y≤e
y≥lnx
,围成的图形,其中曲线段APB的方程为y=lnx(1≤x≤e2),P为曲线上的任一点.
(1)证明:直线OC与曲线段相切;
(2)若过P点作曲线的切线交图形的边界于M,N,求图形被切线所截得的左上部分的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:天骄之路中学系列 读想用 高二数学(上) 题型:044

如图所示,直线l1l2相交于点M,且l1l2,点Nl1.以AB为端点的曲线段C上的任意一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6,分别以l1l2为x轴和y轴,建立如图坐标系,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A (0,)为圆心,1为半径的圆相切,又知C的一个焦点与A关于y = x对称.

    (1)求双曲线C的方程;

    (2)若Q是双曲线线C上的任一点,F1F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程;

    (3)设直线y = mx + 1与双曲线C的左支交于AB两点,另一直线l经过M (–2,0)及AB的中点,求直线ly轴上的截距b的取值范围.

查看答案和解析>>

同步练习册答案