【题目】已知函数f(x)=lg(3+x)+lg(3-x).
(1)判断的奇偶性并加以证明;
(2)判断的单调性(不需要证明);
(3)解关于m的不等式f( m )- f( m+1)﹤0.
【答案】(1)偶函数,证明见解析;(2)在上是增函数,在上是减函数;(3).
【解析】
试题(1)由解析式,可先确定函数定义域,再运用奇偶性定义进行证明.
(2)有题可先对函数进行化简:再设出中间量;,运用复合函数的单调性进行分析,即:增大,增大,也增大,为增区间.反之为减区间.
(3)结合(1)和(2)中的函数性质.可化为比较函数的自变量,列出不等组(需考虑定义域,求解.
试题解析:(1)由,得-3<x<3,∴ 函数f(x)的定义域为(-3,3).
函数f(x)的定义域关于原点对称,且f(-x)=lg(3-x)+lg(3+x)=f(x),
∴ 函数f(x)为偶函数.
(2)、,为增函数
在(-3,0)上是增函数,在(0,3)上是减函数,
∴ f(x)在(-3,0)上是增函数,在(0,3)上是减函数
(3),
由
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为F1,F2,该椭圆与y轴正半轴交于点M,且△MF1F2是边长为2的等边三角形.
(1)求椭圆的标准方程;
(2)过点F2任作一直线交椭圆于A,B两点,平面上有一动点P,设直线PA,PF2,PB的斜率分别为k1,k,k2,且满足k1+k2=2k,求动点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:(1)若,,则;(2)若,,,则;(3)若,,则;(4)若,,则,其中正确命题的序号是( )
A.(1)(2)B.(2)(3)
C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知椭圆的离心率为,点在椭圆上,若圆的一条切线(斜率存在)与椭圆C有两个交点A,B,且.
(1)求椭圆的标准方程;
(2)求圆O的标准方程;
(3)已知椭圆C的上顶点为M,点N在圆O上,直线MN与椭圆C相交于另一点Q,且,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设n为正整数,集合A=.对于集合A中的任意元素和,记
M()=.
(Ⅰ)当n=3时,若, ,求M()和M()的值;
(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值;
(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,
M()=0.写出一个集合B,使其元素个数最多,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合是实数集的子集,如果正实数满足:对任意都存在使得则称为集合的一个“跨度”,已知三个命题:
(1)若为集合的“跨度”,则也是集合的“跨度”;
(2)集合的“跨度”的最大值是4;
(3)是集合的“跨度”.
这三个命题中正确的个数是()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的上下两个焦点分别为,过点与轴垂直的直线交椭圆于两点, 的面积为,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线与轴交于点,与椭圆交于两个不同的点,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.
(1)依据数据的散点图可以看出,可用线性回归模型拟合与的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);
(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?
附:相关系数公式,参考数据:,.
回归方程中斜率和截距的最小二乘估计公式分别为:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,是的导函数,则下列结论中错误的个数是( )
①函数的值域与的值域相同;
②若是函数的极值点,则是函数的零点;
③把函数的图像向右平移个单位长度,就可以得到的图像;
④函数和在区间内都是增函数.
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com