精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=lg3x)+lg3x).

1)判断的奇偶性并加以证明;

2)判断的单调性(不需要证明);

3)解关于m的不等式fm - fm+1﹤0

【答案】1)偶函数,证明见解析;(2上是增函数,在上是减函数;(3

【解析】

试题(1)解析式,可先确定函数定义域,再运用奇偶性定义进行证明.

2)有题可先对函数进行化简:再设出中间量;,运用复合函数的单调性进行分析,即:增大,增大,也增大,为增区间.反之为减区间.

3)结合(1)和(2)中的函数性质.可化为比较函数的自变量,列出不等组(需考虑定义域,求解.

试题解析:(1)由,得-3x3函数f(x)的定义域为(33)

函数f(x)的定义域关于原点对称,且f(x)lg(3x)lg(3x)f(x)

函数f(x)为偶函数.

2)、,为增函数

在(-3,0)上是增函数,在(0,3)上是减函数,

∴ f(x)在(-3,0)上是增函数,在(0,3)上是减函数

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为F1F2,该椭圆与y轴正半轴交于点M,且△MF1F2是边长为2的等边三角形.

1)求椭圆的标准方程;

2)过点F2任作一直线交椭圆于AB两点,平面上有一动点P,设直线PAPF2PB的斜率分别为k1kk2,且满足k1+k2=2k,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:(1)若,则;(2)若,则;(3)若,则;(4)若,则,其中正确命题的序号是(

A.1)(2B.2)(3

C.3)(4D.1)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知椭圆的离心率为,点在椭圆上,若圆的一条切线(斜率存在)与椭圆C有两个交点AB,且.

1)求椭圆的标准方程;

2)求圆O的标准方程;

3)已知椭圆C的上顶点为M,点N在圆O上,直线MN与椭圆C相交于另一点Q,且,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n为正整数集合A=对于集合A中的任意元素

M=

n=3 MM的值

n=4BA的子集且满足对于B中的任意元素相同时M是奇数不同时M是偶数.求集合B中元素个数的最大值

给定不小于2nBA的子集且满足对于B中的任意两个不同的元素

M=0.写出一个集合B使其元素个数最多并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合是实数集的子集,如果正实数满足:对任意都存在使得则称为集合的一个“跨度”,已知三个命题:

(1)若为集合的“跨度”,则也是集合的“跨度”;

(2)集合的“跨度”的最大值是4;

(3)是集合的“跨度”.

这三个命题中正确的个数是()

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心率为

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线轴交于点,与椭圆交于两个不同的点,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

(1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,参考数据:.

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,则下列结论中错误的个数是( )

①函数的值域与的值域相同;

②若是函数的极值点,则是函数的零点;

③把函数的图像向右平移个单位长度,就可以得到的图像;

④函数在区间内都是增函数.

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案