精英家教网 > 高中数学 > 题目详情

【题目】设集合是实数集的子集,如果正实数满足:对任意都存在使得则称为集合的一个“跨度”,已知三个命题:

(1)若为集合的“跨度”,则也是集合的“跨度”;

(2)集合的“跨度”的最大值是4;

(3)是集合的“跨度”.

这三个命题中正确的个数是()

A.0B.1C.2D.3

【答案】B

【解析】

根据集合新定义,对跨度的理解,对三个选项逐一验证即可

1)若集合为,则集合的跨度1,不存在2是集合的跨度,故(1)错

2)集合可表示为,集合相当于是从无限往两边扩充的数列,比如时,若取,我们会发现的绝对值都是在不断变大,故值会不断增大,故的值会无限扩大,集合中不存在跨度最大值的说法

3)集合可表示为,当集合中的时,,因集合中含有元素,我们令,则,故集合的跨度可以为

正确的命题为(3

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于复数,下列命题①若,则;②为实数的充要条件是;③若是纯虚数,则;④若,则.其中真命题的个数为(

A.1B.2

C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将123456789分别填入3×3的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么不同的三阶幻方的个数是(

4

9

2

3

5

7

8

1

6

A.9B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过为坐标原点,线段的中点在圆上.

(1)求的方程;

(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lg3x)+lg3x).

1)判断的奇偶性并加以证明;

2)判断的单调性(不需要证明);

3)解关于m的不等式fm - fm+1﹤0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC.该曲线段是函数时的图象,且图象的最高点为B赛道的中间部分为长千米的直线跑道CD,且CDEF赛道的后一部分是以为圆心的一段圆弧DE

(1)求的值和∠DOE的大小;

(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧DE上,求“矩形草坪”面积的最大值,并求此时P点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2x1aR),若对任意x1[1,+),总存在x2R,使fx1)=gx2),则实数a的取值范围是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为坐标原点,动点在圆外,过点作圆的切线,设切点为.

(1)若点运动到处,求此时切线的方程;

(2)求满足的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图像向左平移个单位长度,再将图像上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图像.

(1)求的单调递增区间;

(2)若对于任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案