【题目】关于复数,下列命题①若,则;②为实数的充要条件是;③若是纯虚数,则;④若,则.其中真命题的个数为( )
A.1B.2
C.3D.4
科目:高中数学 来源: 题型:
【题目】将数列的前n项和分成两部分,且两部分的项数分别是i,,若两部分的和相等,则称数列的前n项和能够进行等和分割.
若,,试写出数列的前4项和的所有等和分割;
求证:等差数列的前项和能够进行等和分割;
若数列的通项公式为:,且数列的前n项和能进行等和分割,求所有满足条件的n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已如椭圆C:的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.
(1)求椭圆C的标准方程;
(2)设动直线l交椭圆C于P,Q两点,直线OP,OQ的斜率分别为k,k'.若,求证△OPQ的面积为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为F1,F2,该椭圆与y轴正半轴交于点M,且△MF1F2是边长为2的等边三角形.
(1)求椭圆的标准方程;
(2)过点F2任作一直线交椭圆于A,B两点,平面上有一动点P,设直线PA,PF2,PB的斜率分别为k1,k,k2,且满足k1+k2=2k,求动点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某公园有三条观光大道、、围成直角三角形,其中直角边,斜边.
(1)若甲乙都以每分钟100的速度从点出发,甲沿运动,乙沿运动,乙比甲迟2分钟出发,求乙出发后的第1分钟末甲乙之间的距离;
(2)现有甲、乙、丙三位小朋友分别在点、、,设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲乙之间的距离表示为的函数,并求甲乙之间的最小距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合是实数集的子集,如果正实数满足:对任意都存在使得则称为集合的一个“跨度”,已知三个命题:
(1)若为集合的“跨度”,则也是集合的“跨度”;
(2)集合的“跨度”的最大值是4;
(3)是集合的“跨度”.
这三个命题中正确的个数是()
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com