【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
科目:高中数学 来源: 题型:
【题目】“若A则B”为真命题,而“若B则C”的逆否命题为真命题,且“若A则B”是“若C则D”的充分条件,而“若D则E”是“若B则C”的充要条件,则¬B是¬E的____条件;A是E的____条件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列{cn}.
(1)设数列{an},{bn}分别为等差、等比数列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)设{an}的首项为1,各项为正整数,bn=3n , 若新数列{cn}是等差数列,求数列{cn} 的前n项和Sn;
(3)设bn=qn﹣1(q是不小于2的正整数),c1=b1 , 是否存在等差数列{an},使得对任意的n∈N* , 在bn与bn+1之间数列{an}的项数总是bn?若存在,请给出一个满足题意的等差数列{an};若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,,点为曲线上任意一点且满足
(1)求曲线的方程;
(2)设曲线与 轴交于两点,点是曲线上异于的任意一点,直线分别交直线:于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年12月10日, 我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标的值评定人工种植的青蒿的长势等级:若,则长势为一级;若,则长势为二级;若,则长势为三级;为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:
种植地编号 | |||||
种植地编号 | |||||
(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标相同的概率;
(2)从长势等级是一级的人工种植地中任取一地,其综合指标为,从长势等级不是一级的人工种植地中任取一地,其综合指标为,记随机变量,求的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数是定义为R的偶函数,且对任意的,都有且当时, ,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教育主管部门到一所中学检查学生的体质健康情况.从全体学生中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式表示如图所示.根据学生体质健康标准,成绩不低于76的为优良.
(1)写出这组数据的众数和中位数;
(2)将频率视为概率.根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(3)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的学生人数,求ξ的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn= ﹣ (n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=anlog3an , 求数列{bn}的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com