【题目】如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC.该曲线段是函数时的图象,且图象的最高点为B赛道的中间部分为长千米的直线跑道CD,且CD∥EF;赛道的后一部分是以为圆心的一段圆弧DE.
(1)求的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧DE上,求“矩形草坪”面积的最大值,并求此时P点的位置.
科目:高中数学 来源: 题型:
【题目】已知圆锥的顶点为,底面圆心为,半径为.
(1)设圆锥的母线长为,求圆锥的体积;
(2)设,、是底面半径,且,为线段的中点,如图.求异面直线与所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆C1: 和椭圆C2: 的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;
②;
③;
④a1-a2<b1-b2.
其中,所有正确结论的序号是( )
A. ②③④ B. ①③④
C. ①②④ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合是实数集的子集,如果正实数满足:对任意都存在使得则称为集合的一个“跨度”,已知三个命题:
(1)若为集合的“跨度”,则也是集合的“跨度”;
(2)集合的“跨度”的最大值是4;
(3)是集合的“跨度”.
这三个命题中正确的个数是()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知两个城市、相距,现计划在两个城市之间合建一个垃圾处理厂,立即处理厂计划在以为直径的半圆弧上选择一点建造(不能选在点、上),其对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为城和城的影响度之和,记点到城的距离为(单位是),建在处的垃圾处理厂对城和城的总影响度为,统计调查表明:垃圾处理厂对城的影响度与所选地点到城的距离的平方成反比,比例系数为100,对城的影响度与所选地点到城的距离的平方成反比,比例系数为,当垃圾处理厂建在上距离城20公里处时,对城和城的总影响度为.
(1)将表示成的函数;
(2)求当垃圾处理厂到、两城市距离之和最大时的总影响度的值;
(3)求垃圾处理厂对城和城的总影响度的最小值,并求出此时的值.(计算结果均用精确值表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为的正方形与梯形所在的平面互相垂直,已知,,,点在线段上.
(1)证明:平面平面;
(2)判断点的位置,使得平面与平面所成的锐二面角为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L.
(1)试用x,y表示L;
(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com