精英家教网 > 高中数学 > 题目详情
6.若(2x+3)3=a0+a1(x+2)+a2(x+2)2+a3(x+2)3,则a0+a1+2a2+3a3=17.

分析 由条件,再结合(2x+3)3 =8•${[-\frac{1}{2}+(x+2)]}^{3}$=8[-$\frac{1}{8}$+$\frac{1}{4}$•(x+2)-$\frac{1}{2}$•(x+2)2+(x+2)3],求得a0、a1、2a2、a3的值,可得a0+a1+2a2+3a3的值.

解答 解:∵(2x+3)3=a0+a1(x+2)+a2(x+2)2+a3(x+2)3
(2x+3)3=${[2(x+\frac{3}{2})]}^{3}$=8•${[-\frac{1}{2}+(x+2)]}^{3}$=8[-$\frac{1}{8}$+$\frac{1}{4}$•(x+2)-$\frac{1}{2}$•(x+2)2+(x+2)3],
∴a0=-1,a1=2,a2 =-4,a3=8,∴a0+a1+2a2+3a3=17,
故答案为:17.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.定积分${∫}_{0}^{1}$$\frac{1}{1+x}$dx的值为ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.把下列直角坐标方程化成极坐标方程.
(1)x2+y2=16
(2)xy=a;
(3)x2+y2+2y=0;
(4)x2-y2=a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义二阶行列式$|\begin{array}{l}{a}&{b}\\{d}&{c}\end{array}|$=ac-bd,那么$|\begin{array}{l}{sin50°}&{cos40°}\\{-\sqrt{3}tan10°}&{1}\end{array}|$=(  )
A.1B.-1C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P是椭圆$\frac{{x}^{2}}{9}$+y2=1上一点,F1,F2是椭圆的焦点且∠F1PF2=90°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若B⊆A,求a的值;
(2)若A⊆B,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知an=3n,bn=3n,n∈N*,对于每一个k∈N*,在ak与ak+1之间插入bk个3得到一个数列{cn},设Tn是数列{cn}的前n项和,则所有满足Tm=3cm+1的正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若f(x)=(a-2)x2+(a-1)x+3是偶函数,则函数f(x)的增区间是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}的前n项和为Sn,在同一坐标系中,an=f(n)及Sn=g(n)的部分图象如图所示.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{n}}$,及数列{bn}的前n项和为Tn,求证:Tn≤$\frac{117}{160}$.

查看答案和解析>>

同步练习册答案