精英家教网 > 高中数学 > 题目详情
5.已知直线(b+2)x+ay+4=0与直线ax+(2-b)y-3=0互相平行,则点(a,b)在(  )
A.圆a2+b2=1上B.圆a2+b2=2上C.圆a2+b2=4上D.圆a2+b2=8上

分析 利用直线(b+2)x+ay+4=0与直线ax+(2-b)y-3=0互相平行,可得$\frac{b+2}{a}=\frac{a}{2-b}≠\frac{4}{3}$,即可得出结论.

解答 解:∵直线(b+2)x+ay+4=0与直线ax+(2-b)y-3=0互相平行,
∴$\frac{b+2}{a}=\frac{a}{2-b}≠\frac{4}{3}$,
∴a2+b2=4,
∴点(a,b)在圆a2+b2=4上,
故选:C.

点评 本题主要考查直线的方程以及直线平行的等价条件,考查学生的计算能力.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设z=log2(1+m)+i log${\;}_{\frac{1}{2}}$(3-m) (m∈R).
(1)若z是虚数,求m的取值范围;
(2)若z所对应的点在第三象限时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.参数方程$\left\{{\begin{array}{l}{x=1-2cosθ}\\{y=2sinθ}\end{array}}$(θ为参数)表示的曲线是(  )
A.一条直线B.两条直线C.一条射线D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知x>0,求f(x)=$\frac{2}{x}$+2x的最小值和取到最小值时对应x的值;
(2)已知0<x<$\frac{1}{3}$,求函数y=x(1-3x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A,B,C的对边分别是a,b,c.
(1)A=60°,a=4$\sqrt{3}$,b=4$\sqrt{2}$,求B;
(2)已知a=3$\sqrt{3}$,c=2,B=150°,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB是圆的直径,PA⊥圆所在的平面,C是圆上的点.
(Ⅰ)求证:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足$z=\frac{2}{1+i}$(i为虚数单位),则z=(  )
A.1+iB.1-iC.?-1+iD.?-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=Asin(ωx+φ)的图象如图所示,则f($\frac{π}{4}$)的值为(  )  
A.$\sqrt{2}$B.0C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.运行如图语句,则输出的结果16

查看答案和解析>>

同步练习册答案