精英家教网 > 高中数学 > 题目详情
13.设x,y满足约束条件$\left\{\begin{array}{l}x-3y≥-2\\ 3x-3y≤4\\ x+y≥1\end{array}\right.$,若x2+9y2≥a恒成立,则实数a的最大值为$\frac{9}{10}$.

分析 根据不等式恒成立转化为求出z=x2+9y2的最小值即可,作出不等式组对应的平面区域,利用数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
设z=x2+9y2,则z>0,
即$\frac{{x}^{2}}{z}+\frac{{y}^{2}}{\frac{z}{9}}$=1,则对应的曲线是焦点在x轴上的椭圆,
由图象知当直线x+y=1与椭圆相切时,z最小,
将y=1-x代入z=x2+9y2,整理得10x2-18x+9-z=0,
则判别式△=182-4×10(9-z)=0,
解得z=$\frac{9}{10}$,
即z的最小值为$\frac{9}{10}$,
则a≤$\frac{9}{10}$,
则a的最大值为$\frac{9}{10}$,
故答案为:$\frac{9}{10}$

点评 本题主要考查线性规划的应用,根据不等式恒成立,转化为求z=x2+9y2的最小值,利用数形结合结合直线和椭圆的位置关系是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在如图所示的算法流程图中,输出S的值为(  )
A.11B.12C.13D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M={-1,0,1,2},N={x|log2x<1},则M∩N=(  )
A.{1}B.{-1,0}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点P(x,y)是圆x2+(y-1)2=1内部的点,则y≥x的概率$\frac{3}{4}+\frac{1}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为(  )
附:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
A.1 193B.1 359C.2 718D.3 413

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下面几种推理过程是演绎推理的是(  )
A.某校高三8个班,1班51人,2班53人,3班52人,由此推测各班人数都超过50人
B.由三角形的性质,推测空间四面体的性质
C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分
D.在数列{an}中,${a_1}=1,{a_n}=\frac{1}{2}({{a_{n-1}}+\frac{1}{{{a_{n-1}}}}})({n≥2})$,通过计算a2,a3,a4推理出{an}的通项公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.PM2.5是指大气中直径≤2.5微米的颗粒物,其浓度是监测环境空气质量的重要指标.当PM2.5日均值在0~35(单位为微米/立方米,下同)时,空气质量为优,在35~75时空气质量为良,超过75时空气质量为污染.某旅游城市2016年春节7天假期里每天的PM2.5的监测数据如茎叶图所示.
(Ⅰ)以上述数据统计的相关频率作为概率,求该市某天空气质量为污染的概率;
(Ⅱ)某游客在此春节假期间有2天来该市旅游,已知这2天该市空气质量均不为污染,求这2天中空气质量都为优的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知A(1,-2),B(4,0),P(a,1),N(a+1,1),若四边形PABN的周长最小,则△APN的外接圆的圆心坐标是$(3,-\frac{9}{8})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列四种说法中,正确的个数有②③
①命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
②“命题P∨Q为真”是“命题P∧Q为真”的必要不充分条件;
③?m∈R,使f(x)=m${x^{{m^2}+2m}}$是幂函数,且在(0,+∞)上是单调递增;
④不过原点(0,0)的直线方程都可以表示成$\frac{x}{a}+\frac{y}{b}$=1;
⑤在线性回归分析中,相关系数r的值越大,变量间的相关性越强.

查看答案和解析>>

同步练习册答案