精英家教网 > 高中数学 > 题目详情
1.点P(x,y)是圆x2+(y-1)2=1内部的点,则y≥x的概率$\frac{3}{4}+\frac{1}{2π}$.

分析 求出圆x2+(y-1)2=1的面积为π,满足y≥x在圆内部分的面积为$\frac{3}{4}$π+$\frac{1}{2}$,即可得出概率.

解答 解:圆x2+(y-1)2=1的面积为π,
满足y≥x在圆内部分的面积为$\frac{3}{4}$π+$\frac{1}{2}$,
∴所求概率为$\frac{3}{4}+\frac{1}{2π}$,
故答案为:$\frac{3}{4}+\frac{1}{2π}$.

点评 本题考查概率的计算,考查学生的计算能力,正确求面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若f(x)是一次函数,在R上单调递增,且满足f(f(x))=16x+9,则f(x)=4x+$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x+4y+6=0与圆x2+(y-b)2=a2相切.
(1)求椭圆C的方程;
(2)已知过椭圆C的左顶点A的两条直线l1,l2分别交椭圆C于M,N两点,且l1⊥l2,求证:直线MN过定点,并求出定点坐标;
(3)在(2)的条件下求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=$\frac{\sqrt{2}}{2}$,给出下列结论:
(1)AC⊥BE;
(2)EF∥平面ABCD;
(3)三棱锥A-BEF的体积为定值;
(4)异面直线AE,BF所成的角为定值.
其中错误的结论有(  )
A.0个B.1 个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排互换座位,第二次左右动物互换座位,…这样交替进行下去,那么202次互换座位后,小猴坐在第4号座位上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|y=lg(2-x)},集合B={x|$\frac{1}{4}$≤2x≤4},则A∩B=(  )
A.{x|x≥-2}B.{x|-2<x<2}C.{x|-2≤x<2}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x,y满足约束条件$\left\{\begin{array}{l}x-3y≥-2\\ 3x-3y≤4\\ x+y≥1\end{array}\right.$,若x2+9y2≥a恒成立,则实数a的最大值为$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.2015年11月11日,天猫交易额以912.17亿元的成绩刷新了世界纪录.随之快递的订单量也激增.某机构就双十一期间快递公司A的物流速度进行了随机调查,如图是200名受调查者对快递公司A的评分(百分制)的频率分布直方图,则其得分的众数大致为(  )
A.65B.70C.75D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数g(x)=$\frac{1}{2}a{x^2}$-(a+1)x+lnx(a∈R,a≠0).
(1)求函数g(x)的单调区间;
(2)若当x∈[1,+∞)时恒有g(x)<0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案