精英家教网 > 高中数学 > 题目详情
3.设向量$\overrightarrow{a}$,$\overrightarrow{b}$不平行,向量$\overrightarrow{a}$+λ$\overrightarrow{b}$与3$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数λ=(  )
A.$\frac{1}{2}$B.-$\frac{1}{3}$C.-3D.-2

分析 由向量平行可得存在实数μ使得$\overrightarrow{a}$+λ$\overrightarrow{b}$=μ(3$\overrightarrow{a}$-$\overrightarrow{b}$)=3μ$\overrightarrow{a}$-μ$\overrightarrow{b}$,对应系数相等可得λμ的方程组,解方程组可得.

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow{b}$不平行,向量$\overrightarrow{a}$+λ$\overrightarrow{b}$与3$\overrightarrow{a}$-$\overrightarrow{b}$平行,
∴存在实数μ使得$\overrightarrow{a}$+λ$\overrightarrow{b}$=μ(3$\overrightarrow{a}$-$\overrightarrow{b}$)=3μ$\overrightarrow{a}$-μ$\overrightarrow{b}$,
∴$\left\{\begin{array}{l}{1=3μ}\\{λ=-μ}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=-\frac{1}{3}}\\{μ=\frac{1}{3}}\end{array}\right.$
故选:B

点评 本题考查向量的平行线与共线,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设常数a∈R,函数f(x)=$\frac{{2}^{x}-a}{{2}^{x}+a}$.
(1)若函数y=f(x)是奇函数,求实数a的值;
(2)当a>0时,若存在区间[m,n](m<n),使得函数f(x)在[m,n]的值域为[2m,2n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在极坐标系中,曲线C的方程为${ρ^2}=\frac{3}{{1+2{{cos}^2}θ}}$,点$R(2\sqrt{2},\frac{π}{4})$,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(1)求曲线C的直角坐标方程及点R的直角坐标;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值及此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,PA⊥平面ABC,PA=$\sqrt{2}$,AB=1,BC=$\sqrt{3}$,AC=2,D是PC的中点.
(1)求二面角B-PA-C的大小;
(2)求直线BD与平面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线1的参数方程是$\left\{\begin{array}{l}{x=t+3}\\{y=\frac{\sqrt{3}}{3}t+\frac{3\sqrt{3}}{4}}\end{array}\right.$(t为参数),曲线C的极坐标方程是ρ=$\frac{6cosθ}{1-cos2θ}$,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数y=f(x)为奇函数且在R上的单调递增,若f(2m)+f(1-m)>0,则实数m的取值范围是(  )
A.(-1,2]B.(-1,+∞)C.(-1,4]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《九章算术》中将底面的长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为蟞臑.在如图所示的阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD=BC,则当点E在下列四个位置:PA中点、PB中点、PC中点、PD中点时分别形成的四面体E-BCD中,蟞臑有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2cos(x+$\frac{π}{6}$)+2sinx.
(1)求函数f(x)的单调递减区间;
(2)若f(x)=$\frac{1}{3}$,求cos(2x+$\frac{2π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过椭圆C:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1上一点P(x0,y0)向圆O:x2+y2=4引两条切线PA,PB(A,B为切点),若PA⊥PB.则P点坐标是$(±2\sqrt{2},0)$.

查看答案和解析>>

同步练习册答案