精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.

(1)若直线与曲线交于两点,求的值;

(2)设曲线的内接矩形的周长为,求的最大值.

【答案】(1;(2.

【解析】试题分析:(1)首先求出曲线的普通方程和焦点坐标, 然后将直线的参数方程代入曲线的普通方程, 利用根与系数的关系和参数的几何意义, 即可得到结果;(2)首先根据椭圆参数方程设出动点的坐标, 然后将矩形周长用三角函数表示出, 再利用三角函数的有界性求解 .

试题解析:(1)已知曲线的标准方程为,则其左焦点为,则,将直线的参数方程与曲线的方程联立,得,则

2)由曲线的方程为,可设曲线上的动点,则以为顶点的内接矩形周长为,因此该内接矩形周长的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若 ,求函数的单调区间;

(Ⅱ)若对任意 都有恒成立,求实数 的取值范围;

(Ⅲ)设函数 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinθ,﹣2)与 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知OPQ是半径为1,圆心角为 的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,则矩形ABCD的面积最大是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),且x∈[ ,π].
(1)求 及| + |;
(2)求函数f(x)= +| + |的最大值,并求使函数取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料分别为A、B两种规格的金属板,每张面积分别为2m2与3m2 . 用A种规格的金属板可造甲种产品3个,乙种产品5个;用B种规格的金属板可造甲、乙两种产品各6个.问A、B两种规格的金属板各取多少张,才能完成计划,并使总的用料面积最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足a3=5,a10=﹣9.
(1)求数列{an}的通项公式;
(2)求Sn的最大值及其相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N点P满足

(1) 求点P的轨迹方程;

(2)设点 在直线x=-3上,且.证明过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简求值:
(1)(1+tan2θ)cos2θ
(2)已知 ,求2+sinθcosθ﹣cos2θ的值.

查看答案和解析>>

同步练习册答案