精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)若 ,求函数的单调区间;

(Ⅱ)若对任意 都有恒成立,求实数 的取值范围;

(Ⅲ)设函数 ,求证:

【答案】1上递增;(2;(3)证明见解析.

【解析】试题分析:(1)由于,导函数的零点不能直接求出,考虑二次求导,求出的最值,从而判断出函数的单调性;(2)由题意可知当时,,可通过讨论研究导函数的单调性和最值,得到的最小值,得到参数的取值范围;(3)由题意可得,可考虑证明两个和为的自变量对应的函数值的积为定值,通过整理并放缩可实现上述设想,最终得证.

试题解析:(1),,,

则当,单调递减,,单调递增.

所以有,所以

(2),,,,单调递增,

,,成立;

,存在,使,,则当,,不合题意.综上

(3

,……,

由此得,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S= ,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,记录如下:

88

89

92

90

91

84

88

96

89

93

(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.(用样本数据特征来说明.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

(Ⅰ)判断函数内零点的个数,并说明理由;

(Ⅱ),使得不等式成立,试求实数的取值范围;

(Ⅲ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点A(1,0),D(﹣1,0),点B,C在单位圆O上,且∠BOC=
(Ⅰ)若点B( ),求cos∠AOC的值;
(Ⅱ)设∠AOB=x(0<x< ),四边形ABCD的周长为y,将y表示成x的函数,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2 , 若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中 ①若loga3>logb3,则a>b;
②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数 既是奇函数又是减函数.
其中正确的命题有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论函数的单调性;

(2)若有两个极值点,记过点的直线的斜率为,问:是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.

(1)若直线与曲线交于两点,求的值;

(2)设曲线的内接矩形的周长为,求的最大值.

查看答案和解析>>

同步练习册答案