精英家教网 > 高中数学 > 题目详情

已知函数,f(x)=x3-ax2-9x+11且f′(1)=-12.
(I)求函数f(x)的解析式;
(II)求函数f(x)的极值.

解:(Ⅰ)由f(x)=x3-ax2-9x+11,得:f(x)=3x2-2ax-9,
又f(1)=3×12-2a-9=-12,∴a=3.
则f(x)=x3-3x2-9x+11;
(Ⅱ)由f(x)=3x2-2ax-9=3x2-6x-9=3(x+1)(x-3).
当x<-1或x>3时,f(x)>0,当-1<x<3时,f(x)<0,
∴f(x)在(-∞,-1),(3,+∞)上为增函数,在(-1,3)上为减函数.
∴函数f(x)的极大值为f(-1)=16,极小值为f(3)=-16.
分析:(Ⅰ)求出原函数的导函数,由f′(1)=-12求出a的值,则函数解析式可求;
(Ⅱ)由导函数大于0求出原函数的增区间,由导函数小于0求出原函数的减区间,则极值点可求,把极值点的横坐标代入函数解析式可求得函数的极值.
点评:本题考查了导数的运算,考查了利用函数的单调性求函数的极值,连续函数在定义域内某点两侧的单调性不同,则该点为函数的极值点,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f-1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f-1(ax)互为反函数,则称y=f(x)满足“a积性质”.
(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;
(2)求所有满足“2和性质”的一次函数;
(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示,则方程f[g(x)]=0有且仅有
6
个根;方程f[f(x)]=0有且仅有
5
个根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(
1
2
,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为
5
4
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R,有下列4个命题:
①若f(1+2x)=f(1-2x),则y=f(x)的图象关于直线x=1对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③若y=f(x)为偶函数,且y=f(2+x)=-f(x),则y=f(x)的图象关于直线x=2对称;
④若y=f(x)为奇函数,且f(x)=f(-x-2),则y=f(x)的图象关于直线x=1对称.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是奇函数,当x>0时,f(x)=x3+1.设f(x)的反函数是y=g(x),则g(-28)=
-3
-3

查看答案和解析>>

同步练习册答案