精英家教网 > 高中数学 > 题目详情
某人根据自己爱好,希望从{W,X,Y,Z}中选2各不同字母,从{0,2,6,8}中选3个不同数字编拟车牌号,要求前三位是数字,后两位是字母,且数字2不能排在首位,字母Z和数字2不能相邻,那么满足要求的车牌号有(  )
A、198个B、180个
C、216个D、234个
考点:计数原理的应用
专题:排列组合
分析:因为2,Z都是特殊元素,故需要对此进行分类,第一类,不选2时,第二类选2,不选Z时,第三类,先2不选Z时,根据分类计数原理可得.
解答: 解:不选2时,有
A
3
3
A
2
4
=72种,
选2,不选Z时,
C
1
2
C
2
3
A
2
2
A
2
3
=72种,
选2,选Z时,当2再数字的中间时
A
2
3
C
1
2
C
1
3
=36种,当2再数字的在数字的第三位时,
A
2
3
A
1
3
=18种,
根据分类计数原理,共有72+72+36+18=198,
故选:A
点评:本题考查了分类计数原理,关键是分类,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设 a=sin(-810°),b=tan(-
33π
8
),c=lge
,则它们的大小关系为(  )
A、a<b<c
B、a<c<b
C、b<c<a
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log 
1
4
(1-x)+log 
1
4
(x+3)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点为F1,F2,M是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆恰好经过椭圆的焦点,且MF1F2的周长为4+2
2

(1)求椭圆C的方程;
(Ⅱ)设直线l是圆O:x2+y2=
4
3
上动点P(x0,y0)(x0•y0≠0)处的切线,l与椭圆C交与不同的两点Q,R,证明:∠QOR=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:x2-3x+1=0,求
x2
x4+3x2+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

当a,b∈(0,+∞)时,aabb≥(ab) 
a+b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率是
1
2
,其左、右顶点分别为A1,A2,B为短轴的一个端点,△A1BA2的面积为2
3

(1)求椭圆C的标准方程;
(2)直线l:x=2
2
与x轴交于点D,点P是椭圆C上异于A1,A2的动点,直线A1P,A2P分别交直线l于E,F两点,证明:|DE|•|DE|恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为4,离心率为
1
2
,左右焦点分别为F1,F2
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M、N,求△F1MN面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,直线x=-
a2
c
与x轴相交于点N,并且满足
F1F2
=2
NF1
,|
F1F2
|=2,设A,B是上半椭圆上满足
NA
NB
,其中λ∈[
1
5
1
3
].
(1)求此椭圆的方程及直线AB的斜率的取值范围;
(2)过A,B两点分别作此椭圆的切线,两切线相交于一点P,求证:点P在一条定直线上,并求点P的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案