精英家教网 > 高中数学 > 题目详情

已知三棱锥P-ABC,PA⊥底面ABC,PA=1,底面ABC是等腰直角三角形,∠BAC=90°,D是PC的中点,PC与底面ABC所成角的大小为数学公式,求异面直线AD与PB所成角的大小(结果用反三角函数值表示).

解:取BC中点E,连AE,DE,
∵D为PC中点,∴DE∥PB,
∴∠ADE(或其补角)的大小即为异面直线AD与PB所成的角的大小.(2分)
∵PA⊥底面ABC,
∴∠PCA就是PC与底面ABC所成角,即∠PCA=
且PA⊥AB,PA⊥AC,
由已知条件及平面几何知识,得:,PB=2,
于是,(8分)
在△ADE中,由余弦定理得(12分)
∴∠ADE=
即异面直线AD与PB所成的角的大小为.(14分)
分析:取BC中点E,连AE,DE,由三角形中位线定理及异面直线夹角的定义可得,∠ADE(或其补角)的大小即为异面直线AD与PB所成的角的大小.结合已知条件解△ADE求出∠ADE的余弦值,进而可得异面直线AD与PB所成角的大小.
点评:本题考查的知识点是异面直线及其所成的角,其中构造出∠ADE(或其补角)的大小即为异面直线AD与PB所成的角的大小,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的三条侧棱PA,PB,PC两两相互垂直,且PA=2
3
,PB=3,PC=2外接球的直径等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱锥P-ABC所成上、下两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB的中点,且△PDB是正三角形,PA⊥PC.
(I)求证:DM∥平面PAC;
(II)求证:平面PAC⊥平面ABC;
(Ⅲ)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)如图,已知三棱锥P-ABC中,PA⊥面ABC,其中正视图为Rt△PAC,AC=2
6
,PA=4,俯视图也为直角三角形,另一直角边长为2
2

(Ⅰ)画出侧视图并求侧视图的面积;
(Ⅱ)证明面PAC⊥面PAB;
(Ⅲ)求直线PC与底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)已知三棱锥P-ABC的棱长都是2,点D是棱AP上不同于P的点.
(1)试用反证法证明直线BD与直线CP是异面直线.
(2)求三棱锥P-ABC的体积VP-ABC

查看答案和解析>>

同步练习册答案