精英家教网 > 高中数学 > 题目详情
13.已知二次方程(m-2)x2+3mx+1=0的两个根分别属于(-1,0)和(0,2),求m的取值范围.

分析 由条件利用二次函数的性质求得m的范围.

解答 解:由题意可得函数y=(m-2)x2+3mx+1为二次函数,且函数的两个零点分别属于(-1,0)和(0,2),
根据f(0)=1>0,可得$\left\{\begin{array}{l}{m-2<0}\\{f(-1)<0}\\{f(2)<0}\end{array}\right.$,求得-$\frac{1}{2}$<m<$\frac{7}{10}$.

点评 本题主要考查二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.一条光线从A(-2,3)射出,经过x轴反射后与圆C:(x-3)2+(y-2)2=1相切,则反射后光线所在直线方程的斜率为$\frac{4}{3}$或$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设m,n为两条直线,α,β为两个平面,下列四个命题中正确的是(  )
A.若m,n与α所成的角相等,则m∥nB.若m∥α,n∥β,α∥β,则m∥n
C.若m?α,n?β,m∥n,则α∥βD.若m⊥α,n⊥β,α⊥β,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.公差d>0的等差数列{an}中,a1=2,a1、a2、a4成等比数列;
(1)求数列{an}的通项公式;
(2)数列{bn}满足an=$\frac{{b}_{1}}{2+1}$+$\frac{{b}_{2}}{{2}^{2}+1}$+$\frac{{b}_{3}}{{2}^{3}+1}$+…+$\frac{{b}_{n}}{{2}^{n}+1}$,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是函数f(x)的一个不动点.若二次函数f(x)=x2+7x+3a没有不动点,则实数a的取值范围是a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的导数:y=ex•lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足$\frac{z}{1+2i}$=|3-4i|,则z的共轭复数$\overline{z}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}<φ<\frac{π}{2}$)的最小正周期为π,且图象关于直线x=$\frac{2π}{3}$对称,则它的一个对称中心的坐标是(  )
A.(-$\frac{π}{12}$,0)B.($\frac{π}{12}$,0)C.(-$\frac{π}{6}$,0)D.($\frac{π}{6}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若sin(π+x)+sin($\frac{π}{2}+x$)=$\frac{1}{2}$,则sin2x=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案