分析 (1)根据正切函数的定义与性质,即可求出函数f(x)的定义域;
(2)函数正切函数的解析式,求出它的单调区间与对称中心即可.
解答 解:(1)∵函数f(x)=$\frac{1}{2}$tan(2x+$\frac{π}{4}$),
∴2x+$\frac{π}{4}$≠$\frac{π}{2}$+kπ,k∈Z,
解得x≠$\frac{π}{8}$+$\frac{kπ}{2}$,k∈Z,
∴函数f(x)的定义域{x|x≠$\frac{π}{8}$+$\frac{kπ}{2}$,k∈Z};
(2)∵函数g(x)=f(x-$\frac{π}{4}$)=$\frac{1}{2}$tan(2x-$\frac{π}{4}$),
令-$\frac{π}{2}$+kπ<2x-$\frac{π}{4}$<$\frac{π}{2}$+kπ,k∈Z,
解得-$\frac{π}{8}$+$\frac{kπ}{2}$<x<$\frac{3π}{8}$+$\frac{kπ}{2}$,k∈Z,
∴g(x)的单调区间是(-$\frac{π}{8}$+$\frac{kπ}{2}$,$\frac{3π}{8}$+$\frac{kπ}{2}$),k∈Z,
令2x-$\frac{π}{4}$=kπ,k∈Z,
解得x=$\frac{π}{8}$+$\frac{kπ}{2}$,k∈Z,
∴函数g(x)的对称中心是($\frac{π}{8}$+$\frac{kπ}{2}$,0),k∈Z.
点评 本题考查了正切函数的定义与性质,以及单调区间和对称中心的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,9+4$\sqrt{2}$) | B. | (0,8+4$\sqrt{2}$) | C. | (1,1+2$\sqrt{2}$) | D. | (4,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com