精英家教网 > 高中数学 > 题目详情
10.某高校在2015年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185)得到的频率分布直方图如图所示.

(1)分别求出第3、4、5组的频率;
(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)计算这100名学生笔试成绩的平均值,中位数.

分析 (1)利用频率分布直方图计算对应的频率值即可;
(2)利用频率计算对应的频数,再利用分层抽样原理求出每组抽取的人数;
(3)利用频率分布直方图,计算平均数和中位数的值.

解答 解:(1)由题设可知,第3组的频率为0.06×5=0.3,
第4组的频率为0.04×5=0.2,
第4组的频率为0.02×5=0.1;  …(3分)
(2)第3组的人数为0.3×100=30,
第4组的人数为0.2×100=20,
 第5组的人数为0.1×100=10;
因为第3、4、5组共有60名学生,
所以利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为:
第3组:$\frac{30}{60}$×6=3,
第4组:$\frac{20}{60}$×6=2,
第5组:$\frac{10}{60}$×6=1;
所以第3、4、5组分别抽取3人、2人、1人;   …(7分)
(3)利用频率分布直方图,得平均数为
$\overline{x}$=162.5×0.01×5+167.5×0.07×5+172.5×0.06×5+177.5×0.04×5+182.5×0.02×5=172.5;
设中位数为x,则0.01×5+0.07×5+0.06×(x-170)=0.02×5+0.04×5+0.06×(175-x)
得x≈171.67,
所以100名学生笔试成绩的平均值是172.25,中位数是171.67.…(10分)

点评 本题考查了频率分布直方图的应用问题,也考查了分层抽样原理与平均数、中位数的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,BD⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD
(Ⅱ)求点A到面CDE的距离;
(III)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若平面α的一个法向量为$\overrightarrow{n}$=(0,2,2),A(1,0,2),B(0,-1,4),A∉α,B∈α,则点A到平面
α的距离为(  )
A.1B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图程序框图的算法思路源于欧几里得名著《几何原本》中的“辗转相除法”,执行该程序框图,若输入m,n分别为225、135,则输出的m=(  )
A.5B.9C.45D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知平面向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(4,-2)若λ$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则λ=1    .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100m到达B处,又测得C对于山坡的斜度为45°,若CD=50m,山坡对于地平面的坡度为θ,则cosθ=$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学校对手工社、摄影社两个社团招新报名的情况进行调查,得到如下的2×2列联表:
手工社摄影社总计
女生6
男生42
总计3060
(1)请填上上表中所空缺的五个数字;
(2)能否在犯错误的概率不超过0.05的前提下,认为学生对这两个社团的选择与“性别”有关系?
(注:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一机器可以按不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少,随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件的个数,现观测得到(x,y)的四组观测值为(8,5),(12,8),(14,9),(16,11).已知y与x有很强的线性相关性,若实际生产中所允许的每小时有缺点的物件数不超过10,则机器的速度每秒不得超过多少转?(精确到整数)
参考公式:
若(x1,y1),…,(xn,yn)为样本点,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.写出函数f(x)=$\sqrt{5+x}+\sqrt{5-x}$-4的定义域,判断并证明其奇偶性和单调性,并求出其所有零点和值域.

查看答案和解析>>

同步练习册答案