【题目】已知平面向量
=(1,x),
=(2x+3,﹣x)(x∈R).
(1)若
∥
,求|
﹣
|
(2)若
与
夹角为锐角,求x的取值范围.
科目:高中数学 来源: 题型:
【题目】如图F1、F2是椭圆C1:
+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是
( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意一个确定的二面角α﹣l﹣β,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是( )
A.a∥a且b∥β
B.a∥a且b⊥β
C.aα且b⊥β
D.a⊥α且b⊥β
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,其前n项的和为Sn,且对任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n.
(1)求
的值;
(2)求证:{an}为等比数列;
(3)已知数列{cn},{dn}满足|cn|=|dn|=an,p(p≥3)是给定的正整数,数列{cn},{dn}的前p项的和分别为Tp,Rp,且Tp=Rp,求证:对任意正整数k(1≤k≤p),ck=dk.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2
cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
.
(1)求cosA的值;
(2)若a=4
,b=5,求向量
在
方向上的投影.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人上午7时乘船出发,以匀速
海里/小时
从
港前往相距50海里的
港,然后乘汽车以匀速
千米/小时(
)自
港前往相距
千米的
市,计划当天下午4到9时到达
市.设乘船和汽车的所要的时间分别为
、
小时,如果所需要的经费
(单位:元)
![]()
(1)试用含有
、
的代数式表示
;
(2)要使得所需经费
最少,求
和
的值,并求出此时的费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是2017年第一季度五省
情况图,则下列陈述正确的是( )
![]()
①2017年第一季度
总量和增速均居同一位的省只有1个;
②与去年同期相比,2017年第一季度五个省的
总量均实现了增长;
③去年同期的
总量前三位是江苏、山东、浙江;
④2016年同期浙江的
总量也是第三位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com