精英家教网 > 高中数学 > 题目详情
精英家教网如图,在平面直角坐标系内,已知A(1,0),B(-1,0)两点,且圆C的方程为x2+y2-6x-8y+21=0,点P为圆上的动点.
(1)求△ABP面积的最小值;
(2)求|AP|2+|BP|2的最大值.
分析:(1)由A与B两点坐标确定出|AB|的长,得出圆上找出最低点,可得出三角形ABP面积最小,由圆的方程变形得出圆心C坐标及半径,根据C横坐标确定出P1横坐标,由C纵坐标减去半径确定出P1纵坐标,三角形ABP的最小面积由|AB|与P1纵坐标乘积的一半求出;
(2)设P(x,y),利用两点间的距离公式表示出|AP|,|BP|,代入所求式子中化简,整理后得出所求式子最大即为|OP|最大,而P为圆上的点,连接OC延长与圆的交点即为此时的P点,(|OP|)max=|OC|+r,求出|OP|的最大值,即可确定出所求式子的最大值.
解答:精英家教网解:(Ⅰ)∵|AB|=
(1+1)2+02
=2,
∴在圆上只要找到最低点P1可得出△ABP面积的最小值,
又∵圆心坐标为(3,4),半径为2,
∴P1横坐标为3,纵坐标为4-2=2,即P1(3,2),
则所求的最小面积为S=
1
2
×2×2=2;
(2)设P(x,y),由两点间的距离公式知|AP|2+|BP|2=(x+1)2+y2+(x-1)2+y2=2(x2+y2)+2=2|OP|2+2,
要使|AP|2+|BP|2最大只要使|OP|2最大即可,
又P为圆上的点,
∴(|OP|)max=|OC|+r=5+2=7,
∴(|AP|2+|BP|2max=100.
点评:此题考查了直线与圆的位置关系,涉及的知识有:两点间的距离公式,圆的标准方程,坐标与图形性质,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案