精英家教网 > 高中数学 > 题目详情
已知函数处取得极小值.
(1)求的值;
(2)若处的切线方程为,求证:当时,曲线不可能在直线的下方.
(1)(2)证明当时,曲线不可能在直线的下方.那么只要证明存在一个变量函数值大于函数的函数值,即可。

试题分析:解:(1),由已知得        3分
,此时单调递减,在单调递增  5分
A. ,,的切线方程为,即            8分
时,曲线不可能在直线的下方恒成立,令
,即恒成立,所以当时,曲线不可能在直线的下方               13分
点评:主要是考查了导数的运用,研究函数的单调性,以及函数的最值,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)若曲线在公共点处有相同的切线,求实数的值;
(2)当时,若曲线在公共点处有相同的切线,求证:点唯一;
(3)若,且曲线总存在公切线,求正实数的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则(  )
A.3B.1C. 0D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数).  (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,解不等式
(2)若,解关于的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若定义在R上的函数f(x)满足,且<0a="f" (),b="f" (),c="f" (),则a,b,c的大小关系为
A.a>b>cB.c>b>aC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为全集,,则(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(1)若时,在其定义域内单调递增,求的取值范围;
(2)设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求的横坐标,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分分)已知函数是不同时为零的常数).
(1)当时,若不等式对任意恒成立,求实数的取值范围;
(2)求证:函数内至少存在一个零点.

查看答案和解析>>

同步练习册答案