精英家教网 > 高中数学 > 题目详情
5.已知等比数列{an}前n项和为Sn,且S4=16,S8=17,则公比q=$±\frac{1}{2}$.

分析 利用等比数列的前n项和公式直接求解.

解答 解:∵等比数列{an}前n项和为Sn,且S4=16,S8=17,
∴$\frac{{S}_{8}}{{S}_{4}}=\frac{{a}_{1}(1-{q}^{8})}{{a}_{1}(1-{q}^{4})}$=1+q4=$\frac{17}{16}$,
解得q=$±\frac{1}{2}$.
故答案为:$±\frac{1}{2}$.

点评 本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知tanα=2,求下列各式的值:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)sinαcosα;
(3)(sinα+cosα)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高三共有男生400名,从所有高三男生中随机抽取20名男生测量身高(单位:cm)作为样本,得到频率分布表与频率分布直方图1(部分)如表:
 分组频数 频率 
[150,160)1 
[160,170) n1 f1
[170,180)  n2 f2 
[180,190)5
[190,200]3 

(Ⅰ)求n1、n2、f1、f2
(Ⅱ)试估计身高不低于180cm的该校高三男生人数,并说明理由;
(Ⅲ)从样本中不低于180cm的男生身高,绘制成茎叶图(图2);
现从身高不低于185cm的男生中任取3名参加选拔性测试,求至少有两位身高不低于190cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x-a|.
(1)当a=2时,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集为[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0),求:m+2n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=cosx(sinx+cosx)-$\frac{1}{2}$.
(1)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别是角A,B,C的对边,且$\sqrt{3}$asinC=c(1+cosA).
(1)求角A;
(2)若a2=16-3bc,且S△ABC=$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)<f(lgx),则x的取值范围为$\frac{1}{10}$<x<10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)在R上是偶函数,且满足f(x+3)=f(x),当$x∈[0,\frac{3}{2}]$时,f(x)=2x2,则f(5)=(  )
A.8B.2C.-2D.50

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,过F1的直线l与双曲线分别交于点A,B,若△ABF2为等边三角形,则双曲线的渐近线的斜率为(  )
A.±$\sqrt{3}$B.±2C.$±\sqrt{6}$D.±$\sqrt{2}$

查看答案和解析>>

同步练习册答案