精英家教网 > 高中数学 > 题目详情
在双曲线中,
c
a
=
5
2
,且双曲线与椭圆4x2+9y2=36有公共焦点,则双曲线方程是
x2
4
-y2=1
x2
4
-y2=1
分析:将椭圆的方程化为标准形式,求出椭圆的焦点坐标即双曲线的焦点坐标,利用双曲线的离心率公式求出双曲线中的参数a,利用双曲线的三个参数的关系求出b,得到双曲线的方程.
解答:解析:焦点在x轴上,由椭圆4x2+9y2=36知,c=
5

所以a=2,b2=c2-a2=1,
所以方程为
x2
4
-y2=1.
故答案:
x2
4
-y2=1.
点评:求圆锥切线的方程问题,一般利用待定系数法,注意椭圆的三个参数关系为:b2=a2-c2;而双曲线中三个参数的关系为b2=c2-a2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,tan
c
2
=
1
2
AH
BC
=0,
AB
•(
CA
+
CB
)=0
,H在BC边上,则过点B以A、H为两焦点的双曲线的离心率为(  )
A、
5
+1
2
B、
5
-1
C、
5
+1
D、
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距为2c,若
c
a
=
5
-1
2
(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-3
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在面积为18的△ABC中,AB=5,双曲线E过点A,且以B、C为焦点,已知
AB
AC
=27,
CA
CB
=54.
(1)建立适当坐标系,求双曲线E的方程;
(2)是否存在过点D(1,1)的直线l,使l与双曲线交于不同的两点M、N,且
DM
+
DN
=0.如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC 中,tan
C
2
=
1
2
AH
BC
=0,
AB
•(
CA
+
CB
)=0
,H在BC边上,则过点B以A、H为两焦点的双曲线的离心率为
5
+ 1
2
5
+ 1
2

查看答案和解析>>

科目:高中数学 来源:安庆模拟 题型:单选题

在△ABC中,tan
c
2
=
1
2
AH
BC
=0,
AB
•(
CA
+
CB
)=0
,H在BC边上,则过点B以A、H为两焦点的双曲线的离心率为(  )
A.
5
+1
2
B.
5
-1
C.
5
+1
D.
5
-1
2

查看答案和解析>>

同步练习册答案