精英家教网 > 高中数学 > 题目详情
f(x)是定义在R上的以3为周期的奇函数,f(2)=0,则方程f(x)=0在区间(0,6)内解的个数(  )
A.是3个B.是4个C.是5个D.多于5个
∵f(x)是定义在R上的以3为周期的奇函数,f(2)=0,若x∈(0,6),则可得出f(5)=f(2)=0.
又根据f(x)为奇函数,则f(-2)=-f(2)=0,又可得出f(4)=f(1)=f(-2)=0.
又函数f(x)是定义在R上的奇函数,可得出f(0)=0,从而f(3)=f(0)=0.
在f(x+3)=f(x)中,令x=-
3
2
,则有f(-
3
2
)=f(
3
2
).再由奇函数的定义可得f(-
3
2
)=-f(
3
2
),∴f(
3
2
)=0.
故f(
9
2
)=f(
3
2
)=f(4)=f(1)=f(3)=f(5)=f(2)=0,共7个解,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若关于x的方程x2+(1+2i)x+3m+i=0有实根,则实数m等于(  )
A.
1
12
B.
1
12
i
C.-
1
12
D.-
1
12
i

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+mx+n有两个零点-1与3
(1)求出函数f(x)的解析式,并指出函数f(x)的单调递增区间;
(2)若g(x)=f(|x|)对任意x1,x2∈[t,t+1],且x1≠x2,都有
g(x1)-g(x2)
x1-x2
>0
成立,试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

根据下表,能够判断f(x)=g(x)在四个区间:①(-1,0);②(0,1);③(1,2);④(2,3)中有实数解是的______(填序号).
x-10123
f(x)-0.6773.0115.4325.9807.651
g(x)-0.5303.4514.8905.2416.892

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数函f(x)=x|x|-2x(x∈R)
(1)判断函数的奇偶性,并用定义证明;
(2)作出函数f(x)=x|x|-2x的图象;
(3)讨论方程x|x|-2x=a根的情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若关于x的方程
2x-x2
-mx-2=0
有两个不相等的实数解,则实数m的取值范围是(  )
A.(-∞,-
3
4
)
B.(-∞,-
3
4
)∪(
3
4
,+∞)
C.(
3
4
,1]
D.[-1,-
3
4
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
x+2,0≤x<1
2x+
1
2
,x≥1.
若a>b≥0,且f(a)=f(b),则bf(a)的取值范围是(  )
A.[
5
4
,3)
B.[
5
2
,3)
C.[
1
2
,3)
D.[1,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=mx2+3(m-4)x-9,m为常数.判断函数f(x)是否存在零点,若存在,指出存在几个,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程
x-1
lg(x2+y2-1)=0
所表示的曲线图形是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案