精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xlnx,过点A 作函数y=f(x)图象的切线,则切线的方程为________.
x+y+=0
设切点T(x0,y0),则kAT=f′(x0),∴=lnx0+1,即e2x0+lnx0+1=0,设h(x)=e2x+lnx+1,当x>0时h′(x)>0,∴h(x)是单调递增函数,∴h(x)=0最多只有一个根.又h =e2×+ln+1=0,∴x0.由f′(x0)=-1得切线方程是x+y+=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个物体的运动方程为,其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是(  )
A.米/秒B.米/秒C.米/秒D.米/秒

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求抛物线y=x2上点到直线x-y-2=0的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定义在(0,+∞)上的函数f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数处的切线方程是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

自由落体运动的物体下降的距离h和时间t的关系式为hgt2,则从t=0到t=1时间段内的平均速度为________,在t=1到t=1+Δt时间段内的平均速度________,在t=1时刻的瞬时速度为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个物体的运动方程为s=1-t+t2,其中s的单位是m,t的单位是s,那么物体在3s末的瞬时速度是_______m/s.

查看答案和解析>>

同步练习册答案