【题目】已知椭圆短轴的一个端点与其两个焦点构成面积为3的直角三角形.
(1)求椭圆的方程;
(2)过圆上任意一点作圆的切线,与椭圆交于两点,以为直径的圆是否过定点,如过,求出该定点;不过说明理由.
科目:高中数学 来源: 题型:
【题目】设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点P(k,-2)与点离
为4,则k等于 ( )
A.4 B.4或-4 C.-2 D.-2或2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆短轴的一个端点与其两个焦点构成面积为3的直角三角形.
(1)求椭圆的方程;
(2)过圆上任意一点作圆的切线, 与椭圆交于两点,以为直径的圆是否过定点,如过,求出该定点;不过说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积;
(2)求该几何体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.
(1)写出y关于x的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积y最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为的函数,如果存在区间,同时满足:
①在上是单调函数;
②当定义域是时,的值域也是.
则称是该函数的“等域区间”.
(1)求证:函数不存在“等域区间”;
(2)已知函数(,)有“等域区间”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.
(1)若商品一天购进该商品10件,求当天的利润(单位:元)关于当天需求量(单位:件,)的函数解析式;
(2)商店记录了50天该商品的日需求量(单位:件,),整理得下表:
若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com