精英家教网 > 高中数学 > 题目详情

【题目】 一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.

(1)求该几何体的体积

(2)求该几何体的表面积

【答案】(1)(2)

【解析】

试题分析:(1)根据正视图是底面边长为的平行四边形,侧视图是个长为,宽为的矩形,得到该几何体是一个平行六面体,其底面是边长为的正方形,高为,即可求解体积;(2)由(1)看出的几何体,知道该平行六面体中,,得到侧棱长,表示几何体的表面积,得到结果.

试题解析:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为所以

(2)由三视图可知,该平行六面体中平面平面

侧面均为矩形

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性,并加以证明;

(2)用定义证明函数在区间上为增函数;

(3)若函数在区间上的最大值与最小值之和不小于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】社区服务是综合实践活动课程的重要内容,某市教育部门在全市高中学生中随机抽取200位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.

(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;

(2)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数,试求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是 ( )

A. 各个面都是三角形的几何体是三棱锥

B. 以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥

C. 棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥

D. 圆锥的顶点与底面圆周上的任意一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调递增区间;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几何体中是旋转体的是(  )

①圆柱 ②六棱锥 ③正方体 ④球体 ⑤四面体

A. ①和⑤ B.

C. ③和④ D. ①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆短轴的一个端点与其两个焦点构成面积为3的直角三角形.

(1)求椭圆的方程;

(2)过圆上任意一点作圆的切线与椭圆交于两点,以为直径的圆是否过定点,如过,求出该定点;不过说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的方程是:,点

1,直线过点且与曲线只有一个公共点,求直线的方程;

2若曲线表示圆且被直线截得的弦长为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P={x|x2-8x-20≤0},S={x|1-mx≤1+m}.

(1)是否存在实数m,使xPxS的充要条件,若存在,求出m的范围;

(2)是否存在实数m,使xPxS的必要条件,若存在,求出m的范围.

查看答案和解析>>

同步练习册答案