分析 (1)利用线面垂直与判定的性质定理即可得出:AM⊥BC.由PA=AB,利用等腰三角形的性质可得AM⊥PB,再利用线面垂直的判定定理即可证明.
(2)连接MC,设M到平面PAC的距离为d,利用VM-PAC=VC-PAM,即d•S△PAC=BC•S△PAM,即可得出.
解答 (1)证明:∵PA⊥平面ABC,BC?平面ABC,∴PA⊥BC,![]()
∵BC⊥AB,PA∩AB=A,BC⊥平面PAB,
又AM?平面PAB,∴AM⊥BC.
∵PA=AB,M为PB的中点,∴AM⊥PB,
又PB∩BC=B,∴AM⊥平面PBC.
(2)解:连接MC,设M到平面PAC的距离为d,
∵S△PAM=$\frac{1}{2}$S△PAB=$\frac{1}{2}×\frac{1}{2}×2×2$=1.
S△PAC=$\frac{1}{2}×2×AC$=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,
又∵VM-PAC=VC-PAM,
∴d•S△PAC=BC•S△PAM,
即$\sqrt{5}$d=1,
∴d=$\frac{\sqrt{5}}{5}$.
点评 本题考查了线面垂直的判定与性质定理、等腰三角形的性质、三棱锥的体积计算公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{8}{3}$,$\frac{28}{5}$) | B. | ($\frac{8}{3}$,$\frac{28}{5}$] | C. | ($\frac{8}{3}$,$\frac{18}{5}$) | D. | ($\frac{8}{3}$,$\frac{18}{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m≤1 | B. | 0<m≤1 | C. | 0≤m≤1 | D. | m≥1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com