精英家教网 > 高中数学 > 题目详情
18.已知2-9,2a1,2a2,2-1成等比数列,2,log3b1,log3b2,log3b3,0成等差数列,则b2(a2-a1)=(  )
A.-8B.8C.$-\frac{9}{8}$D.$\frac{9}{8}$

分析 运用等比数列的通项公式,可得公比q,再由等比数列的定义可得a2-a1,再由等差数列中项的性质,结合对数的运算性质可得b2,即可得到所求值.

解答 解:设等比数列的公比为q,
由2-9,2a1,2a2,2-1成等比数列,可得:
q3=$\frac{{2}^{-1}}{{2}^{-9}}$=28,即有q=2${\;}^{\frac{8}{3}}$,
即$\frac{{2}^{{a}_{2}}}{{2}^{{a}_{1}}}$=q=2${\;}^{\frac{8}{3}}$,
可得a2-a1=$\frac{8}{3}$; 
2,log3b1,log3b2,log3b3,0成等差数列,
可得2log3b2=2+0,
解得b2=3,
则b2(a2-a1)=3×$\frac{8}{3}$=8.
故选:B.

点评 本题考查等比数列和等差数列的定义和通项公式、性质的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若z∈C,i为虚数单位,且$\frac{z}{{|z{|^2}}}=\frac{3}{5}-\frac{4}{5}i$,则复数z等于(  )
A.$\frac{3}{5}+\frac{4}{5}i$B.$\frac{3}{5}-\frac{4}{5}i$C.$\frac{5}{3}-\frac{5}{4}i$D.$\frac{4}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数a,b满足(a+i)(1-i)=3+bi(i为虚数单位),记z=a+bi,则|z|是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-3|-|x+1|.
(1)若不等式f(x)≤a的解集是空集,求实数a的取值范围;
(2)若存在x0∈R,使得2f(x0)≤-t2+4|t|成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.实数x,y满足$\frac{x^2}{4}+\frac{y^2}{3}=1$,则2x+$\sqrt{3}$y的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{2x}{x+1}$
(1)用定义证明:f(x)在[0,1]上是增函数
(2)若2<x<6时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在△ABC中,$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$,DE∥BC交AC于E,BC边上的中线AM交DE于N,设$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow{b}$,用$\overrightarrow a$,$\overrightarrow{b}$表示向量$\overrightarrow{AN}$.则$\overrightarrow{AN}$等于(  )
A.$\frac{1}{2}$($\overrightarrow a$+$\overrightarrow{b}$)B.$\frac{1}{3}$( $\overrightarrow a$+$\overrightarrow{b}$)C.$\frac{1}{6}$( $\overrightarrow a$+$\overrightarrow{b}$)D.$\frac{1}{8}$( $\overrightarrow a$+$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若某几何体的三视图(单位:cm)如图所示,则此几何体的侧面积等于(  )
A.12πcm2B.15πcm2C.24πcm2D.30πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.把正整数按一定的规律排成如图所示的三角形数阵.设aij(i,j∈N*)是位于数阵中从上向下数第i行,从左向右数第j列的数,例如:a43=10,若aij=173,则i+j=11.

查看答案和解析>>

同步练习册答案