精英家教网 > 高中数学 > 题目详情
13.实数x,y满足$\frac{x^2}{4}+\frac{y^2}{3}=1$,则2x+$\sqrt{3}$y的最大值是5.

分析 由柯西不等式得($\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$)(42+32)$≥(\frac{x}{2}•4+\frac{y}{\sqrt{3}}•3)^{2}$=(2x+$\sqrt{3}y$)2,即可得2x+$\sqrt{3}$y的最大值,

解答 解:由柯西不等式得($\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$)(42+32)$≥(\frac{x}{2}•4+\frac{y}{\sqrt{3}}•3)^{2}$=(2x+$\sqrt{3}y$)2
∴1×25$≥(2x+\sqrt{3}y)^{2}$,∴$2x+\sqrt{3}y≤5$,即2x+$\sqrt{3}$y的最大值是5,
故答案为:5.

点评 本题考查了柯西不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若变量x,y满足条件$\left\{{\begin{array}{l}{{x^2}+{y^2}-2x-2y+1≤0}\\{|x-1|-y≤0}\end{array}}\right.$,则z=2x+y最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,A,B分别为其左、右顶点.O为坐标原点,D为其上一点,DF⊥x轴.过点A的直线l与线段DF交于点E,与y轴交于点M,直线BE与y轴交于点N,若3|OM|=2|ON|,则双曲线的离心率为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{alnx}{x}$+b(a,b∈R)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)求实数a,b的值及函数f(x)的单调区间.
(2)当f(x1)=f(x2)(x1≠x2)时,比较x1+x2与2e(e为自然对数的底数)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y=sin(x+\frac{π}{4})$在闭区间(  )上为增函数.
A.$[-\frac{3}{4}π,\frac{π}{4}]$B.[-π,0]C.$[-\frac{π}{4},\frac{3}{4}π]$D.$[-\frac{π}{2},\frac{π}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知2-9,2a1,2a2,2-1成等比数列,2,log3b1,log3b2,log3b3,0成等差数列,则b2(a2-a1)=(  )
A.-8B.8C.$-\frac{9}{8}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设随机变量X的分布列为P(X=k)=$\frac{k}{25}$,k=1,2,3,4,5,则P($\frac{1}{2}$<X<$\frac{5}{2}$)等于(  )
A.$\frac{2}{15}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某空间几何体的三视图如图所示,图中主视图和侧视图是两个全等的等腰直角三角形,腰长为4,俯视图中的四边形为正方形,则这个几何体的体积是(  )
A.$\frac{32}{3}$B.$\frac{64}{3}$C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足x2+y2-6x+8y-11=0,则$\sqrt{{x}^{2}+{y}^{2}}$的最大值=11,|3x+4y-28|的最小值=5.

查看答案和解析>>

同步练习册答案