精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{alnx}{x}$+b(a,b∈R)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)求实数a,b的值及函数f(x)的单调区间.
(2)当f(x1)=f(x2)(x1≠x2)时,比较x1+x2与2e(e为自然对数的底数)的大小.

分析 (1)根据导数几何意义即可求出a,b的值,根据导数和函数的单调性的关系即可求出,
(2)当f(x1)=f(x2)(x1≠x2)时,x1+x2>2e,设1<x1<e<x2,当x2≥2e时,显然x1+x2>2e,当e<x2<2e时,构造函数,根据函数的单调性即可证明

解答 解:(1)f′(x)=$\frac{a(1-lnx)}{{x}^{2}}$,
∵函数f(x)图象在点(1,f(1))处的切线方程为y=x-1,
∴$\left\{\begin{array}{l}{f(1)=b=0}\\{f′(1)=a=1}\end{array}\right.$,
∴f(x)=$\frac{lnx}{x}$,定义域为(0,+∞),
∴f′(x)=$\frac{1-lnx}{{x}^{2}}$
∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,
∴f(x)的单调增区间是(0,e),单调减区间是(e,+∞);
(2)当f(x1)=f(x2)(x1≠x2)时,x1+x2>2e,
下面证明结论,
当x>e时,f(x)=$\frac{lnx}{x}$>0,由(1)可知f(x)的单调增区间是(0,e),单调减区间是(e,+∞),
又f(1)=0,
∴若f(x1)=f(x2)(x1≠x2),则x1,x2都大于1,且必有一个小于e,一个大于e,
设1<x1<e<x2
当x2≥2e时,显然x1+x2>2e,
当e<x2<2e时,
∴f(x1)-f(2e-x2)=f(x2)-f(2e-x2)=$\frac{ln{x}_{2}}{{x}_{2}}$-$\frac{ln(2e-{x}_{2})}{2e-{x}_{2}}$,
设g(x)=$\frac{lnx}{x}$-$\frac{ln(2e-x)}{2e-x}$,e<x<2e,
∴g′(x)=$\frac{1}{{x}^{2}(2e-x)^{2}}$•{4e(e-x)(1-lnx)+x2[(2-ln(-(x-e)2+e2]},
∵e<x<2e,
∴0<-(x-e)2+e2<e2
∴2-ln(-(x-e)2+e2>0
∵4e(e-x)(1-lnx)>0,
∴g′(x)>0,
∴g(x)在(e,2e)上单调递增,
∴g(x)>g(e)=0,
∴f(x1)>f(2e-x2),
∵1<x1<e<x2
∴0<2e-x2<e,
∵f(x)在(0,e)上单调递增,
∴x1>2e-x2
∴x1+x2>2e,
综上所述,当f(x1)=f(x2)(x1≠x2)时,x1+x2>2e

点评 本题考查导数知识的综合运用,考查函数的单调性与最值,考查学生分析解决问题的能力,属于难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.对于实数x,y,若|x-1|≤2,|y-1|≤2,则|x-2y+1|的最大值为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“¬p为真”是“p∨q为假”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数a,b满足(a+i)(1-i)=3+bi(i为虚数单位),记z=a+bi,则|z|是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,O为坐标原点,A(-1,2),B(3,4),C为AB中点,则$\overrightarrow{AB}$•$\overrightarrow{OC}$的值是(  )
A.10B.-10C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-3|-|x+1|.
(1)若不等式f(x)≤a的解集是空集,求实数a的取值范围;
(2)若存在x0∈R,使得2f(x0)≤-t2+4|t|成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.实数x,y满足$\frac{x^2}{4}+\frac{y^2}{3}=1$,则2x+$\sqrt{3}$y的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在△ABC中,$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$,DE∥BC交AC于E,BC边上的中线AM交DE于N,设$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow{b}$,用$\overrightarrow a$,$\overrightarrow{b}$表示向量$\overrightarrow{AN}$.则$\overrightarrow{AN}$等于(  )
A.$\frac{1}{2}$($\overrightarrow a$+$\overrightarrow{b}$)B.$\frac{1}{3}$( $\overrightarrow a$+$\overrightarrow{b}$)C.$\frac{1}{6}$( $\overrightarrow a$+$\overrightarrow{b}$)D.$\frac{1}{8}$( $\overrightarrow a$+$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对边分别为a,b,c,已知△ABC的外接圆半径R=$\sqrt{2}$,且tanB+tanC=$\frac{\sqrt{2}sinA}{cosC}$
(1)求B和b的值;
(2)求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案