精英家教网 > 高中数学 > 题目详情
16.“¬p为真”是“p∨q为假”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

分析 根据复合命题真假关系,结合充分条件和必要条件的定义进行判断即可.

解答 解:¬p为真,则p为假命题,则当q为真命题时,p∨q为真命题,则充分性不成立,
若p∨q为假,则p,q同时为假命题,则¬p为真命题,即必要性成立,
则“¬p为真”是“p∨q为假”的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,结合充分条件和必要条件的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-3≤0}\\{x+y+1≥0}\\{y≥-1}\end{array}\right.$,则z=2|x|+y的最大植为11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若变量x,y满足条件$\left\{{\begin{array}{l}{{x^2}+{y^2}-2x-2y+1≤0}\\{|x-1|-y≤0}\end{array}}\right.$,则z=2x+y最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P在双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$上,点A满足$\overrightarrow{PA}=(t-1)\overrightarrow{OP}$(t∈R),且$\overrightarrow{OA}•\overrightarrow{OP}=64$,$\overrightarrow{OB}=(0,1)$,则$|{\overrightarrow{OB}•\overrightarrow{OA}}|$的最大值为(  )
A.$\frac{5}{4}$B.$\frac{24}{5}$C.$\frac{4}{5}$D.$\frac{5}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的奇函数f(x)满足f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=3x-1,则f(9)=(  )
A.-2B.2C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面中,复数$\frac{1}{{{{({1+i})}^2}+1}}+i$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,A,B分别为其左、右顶点.O为坐标原点,D为其上一点,DF⊥x轴.过点A的直线l与线段DF交于点E,与y轴交于点M,直线BE与y轴交于点N,若3|OM|=2|ON|,则双曲线的离心率为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{alnx}{x}$+b(a,b∈R)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)求实数a,b的值及函数f(x)的单调区间.
(2)当f(x1)=f(x2)(x1≠x2)时,比较x1+x2与2e(e为自然对数的底数)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某空间几何体的三视图如图所示,图中主视图和侧视图是两个全等的等腰直角三角形,腰长为4,俯视图中的四边形为正方形,则这个几何体的体积是(  )
A.$\frac{32}{3}$B.$\frac{64}{3}$C.16D.32

查看答案和解析>>

同步练习册答案