精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系中,O为坐标原点,A(-1,2),B(3,4),C为AB中点,则$\overrightarrow{AB}$•$\overrightarrow{OC}$的值是(  )
A.10B.-10C.20D.-20

分析 根据平面向量的坐标表示与运算性质,求出向量$\overrightarrow{AB}$、$\overrightarrow{OC}$,计算$\overrightarrow{AB}$•$\overrightarrow{OC}$.

解答 解:平面直角坐标系中,O为坐标原点,A(-1,2),B(3,4),
∴$\overrightarrow{AB}$=(4,2);
又C为AB的中点,
∴C(1,3),$\overrightarrow{OC}$=(1,3);
∴$\overrightarrow{AB}$•$\overrightarrow{OC}$=4×1+2×3=10.
故选:A.

点评 本题考查了平面向量的坐标表示与运算性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知x>1,则函数$y=\frac{{{x^2}+x+1}}{x-1}$的最小值为$3+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的奇函数f(x)满足f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=3x-1,则f(9)=(  )
A.-2B.2C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,A,B分别为其左、右顶点.O为坐标原点,D为其上一点,DF⊥x轴.过点A的直线l与线段DF交于点E,与y轴交于点M,直线BE与y轴交于点N,若3|OM|=2|ON|,则双曲线的离心率为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线y=2x上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y+6>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,则实数m的取值范围是(  )
A.(-2,+∞)B.[-2,+∞)C.(-∞,-2)D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{alnx}{x}$+b(a,b∈R)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)求实数a,b的值及函数f(x)的单调区间.
(2)当f(x1)=f(x2)(x1≠x2)时,比较x1+x2与2e(e为自然对数的底数)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y=sin(x+\frac{π}{4})$在闭区间(  )上为增函数.
A.$[-\frac{3}{4}π,\frac{π}{4}]$B.[-π,0]C.$[-\frac{π}{4},\frac{3}{4}π]$D.$[-\frac{π}{2},\frac{π}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设随机变量X的分布列为P(X=k)=$\frac{k}{25}$,k=1,2,3,4,5,则P($\frac{1}{2}$<X<$\frac{5}{2}$)等于(  )
A.$\frac{2}{15}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x-1|-|2x+6|.
(Ⅰ)解不等式f(x)≤1;
(Ⅱ)?x∈R,f(x)≥|3m-2|,求m的取值范围.

查看答案和解析>>

同步练习册答案