精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=|x-1|-|2x+6|.
(Ⅰ)解不等式f(x)≤1;
(Ⅱ)?x∈R,f(x)≥|3m-2|,求m的取值范围.

分析 (Ⅰ)通过讨论x的范围,求出f(x)的分段函数的形式,解不等式,求出各个区间上的x的范围,取并集即可;
(Ⅱ)求出f(x)的最大值,得到关于m的不等式组,解出即可.

解答 解:(Ⅰ)当x<-3时,f(x)=-(x-1)+(2x+6)=x+7;
当-3≤x<1时,f(x)=-(x-1)-(2x+6)=-3x-5;
当x≥1时,f(x)=(x-1)-(2x+6)=-x-7;
所以$f(x)=\left\{\begin{array}{l}x+7,x<3\\-3x-5,-3≤x<1\\-x-7,x≥1.\end{array}\right.$,
当x<3时,x+7≤1,所以x≤-6;
当-3≤x<1时,-3x-5≤1,所以-2≤x<1;
当x≥1时,-x-7≤1,所以x≥1,
综上所述,不等式f(x)≤1的解集为{x|x≤-6或x≥-2}.
(Ⅱ)由(Ⅰ)知,函数f(x)的最大值为4,
因为?x∈R,f(x)≥|3m-2|,所以|3m-2|≤4,所以-4≤3m-2≤4,
所以$-\frac{2}{3}≤m≤2$,
所以m的取值范围为$[{-\frac{2}{3},2}]$.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,O为坐标原点,A(-1,2),B(3,4),C为AB中点,则$\overrightarrow{AB}$•$\overrightarrow{OC}$的值是(  )
A.10B.-10C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$6+4\sqrt{2}+2\sqrt{6}$B.$4+6\sqrt{2}+2\sqrt{5}$C.$4+2\sqrt{5}+2\sqrt{6}$D.$4+6\sqrt{2}+2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若圆(x-3)2+(y+5)2=r2上恰有3个点到直线4x-3y=2的距离等于1,则半径r的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x+1|+|x-5|的最小值为m
(1)求m的值;
(2)若a,b,c为正实数,且a+b+c=m,求证:a2+b2+c2≥12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对边分别为a,b,c,已知△ABC的外接圆半径R=$\sqrt{2}$,且tanB+tanC=$\frac{\sqrt{2}sinA}{cosC}$
(1)求B和b的值;
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,射线θ=$\frac{π}{4}$被圆ρ=4sinθ截得的弦长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,输出的S值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设等比数列{an}中,前n项和为Sn,已知S3=8,S6=4,则S12=5.

查看答案和解析>>

同步练习册答案