| A. | (-2,+∞) | B. | [-2,+∞) | C. | (-∞,-2) | D. | (-∞,-2] |
分析 要使直线y=2x上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y+6>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,画出可行域,求出y=2x与x+y+6=0的交点坐标,然后求解m即可.
解答
解:由题意,约束条件$\left\{\begin{array}{l}{x+y+6>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,的可行域如图,
由$\left\{\begin{array}{l}{x+y+6=0}\\{y=2x}\end{array}\right.$,可求得A交点坐标为(-2,-4).
要使直线y=2x上存在点(x,y)满足$\left\{\begin{array}{l}{x+y+6>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,
如图所示.可得m>-2.
则实数m的取值范围(-2,+∞)
故选:A.
点评 本题考查线性规划知识的运用,考查学生的理解能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $m≥\frac{1}{e}$ | B. | $0<m≤\frac{1}{e}$ | C. | $m≥\frac{1}{e^2}$ | D. | $0<m≤\frac{1}{e^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}})$ | B. | $({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$ | C. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | D. | $({-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | -10 | C. | 20 | D. | -20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$<a<$\frac{3}{2}$ | B. | $\frac{1}{2}$≤a<$\frac{3}{2}$ | C. | $\frac{1}{2}$<a≤$\frac{3}{2}$ | D. | $\frac{1}{2}$≤a≤$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com