精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=\left\{\begin{array}{l}{e^{mx}}(x≥0)\\ \frac{1}{m}ln(-x)(x<0)\end{array}\right.$(其中m>0,e为自然对数的底数)的图象为曲线M,若曲线M上存在关于直线x=0对称的点,则实数m的取值范围是(  )
A.$m≥\frac{1}{e}$B.$0<m≤\frac{1}{e}$C.$m≥\frac{1}{e^2}$D.$0<m≤\frac{1}{e^2}$

分析 由题意可得方程$\frac{1}{m}lnx={e}^{mx}$有正根.由y=$\frac{1}{m}lnx$与y=emx互为反函数,则其图象关于直线y=x对称,求其公切点的横坐标,再由$\left\{\begin{array}{l}{\frac{1}{m}lne≥e}\\{{e}^{me}≤e}\end{array}\right.$求得m的范围.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{e^{mx}}(x≥0)\\ \frac{1}{m}ln(-x)(x<0)\end{array}\right.$的图象上存在关于直线x=0对称的点,
∴函数f(x)=$\frac{1}{m}ln(-x)$(x<0)关于y轴的对称图象与函数f(x)=emx(x≥0)的图象有交点,
即方程$\frac{1}{m}lnx={e}^{mx}$有正根.
∵y=$\frac{1}{m}lnx$与y=emx互为反函数,则其图象关于直线y=x对称,
设y=$\frac{1}{m}lnx$与y=emx的公切点为(x0,x0),
则$\frac{1}{m{x}_{0}}=m{e}^{m{x}_{0}}$,${e}^{m{x}_{0}}=\frac{1}{m}ln{x}_{0}$,联立可得x0=e.
∴$\left\{\begin{array}{l}{\frac{1}{m}lne≥e}\\{{e}^{me}≤e}\end{array}\right.$,解得m$≤\frac{1}{e}$.
又m>0,∴实数m的取值范围是0<m$≤\frac{1}{e}$.
故选:B.

点评 本题考查函数的图象,考查了函数零点的判定,体现了数学转化思想方法,思维难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设xy>0,则$({x^2}+\frac{4}{y^2})({y^2}+\frac{1}{x^2})$的最小值为(  )
A.-9B.9C.10D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某污水处理厂要在一个矩形ABCD的池底水平铺设污水净化管道(直角△EFG,E是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口E是AB的中点,F、G分别落在AD、BC上,且AB=20m,$AD=10\sqrt{3}m$,设∠GEB=θ.
(1)试将污水管道的长度l表示成θ的函数,并写出定义域;
(2)当θ为何值时,污水净化效果最好,并求此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的奇函数f(x)满足f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=3x-1,则f(9)=(  )
A.-2B.2C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知R为实数集,集合A={x|x2-2x≥0},B={x|x>1},则(∁RA)∩B(  )
A.(0,1)B.(0,1]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,A,B分别为其左、右顶点.O为坐标原点,D为其上一点,DF⊥x轴.过点A的直线l与线段DF交于点E,与y轴交于点M,直线BE与y轴交于点N,若3|OM|=2|ON|,则双曲线的离心率为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线y=2x上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y+6>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,则实数m的取值范围是(  )
A.(-2,+∞)B.[-2,+∞)C.(-∞,-2)D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y=sin(x+\frac{π}{4})$在闭区间(  )上为增函数.
A.$[-\frac{3}{4}π,\frac{π}{4}]$B.[-π,0]C.$[-\frac{π}{4},\frac{3}{4}π]$D.$[-\frac{π}{2},\frac{π}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是$\frac{4\sqrt{3}}{3}$,表面积为12.

查看答案和解析>>

同步练习册答案